summaryrefslogtreecommitdiff
path: root/manuals/chickadee/Matrices.html
diff options
context:
space:
mode:
Diffstat (limited to 'manuals/chickadee/Matrices.html')
-rw-r--r--manuals/chickadee/Matrices.html409
1 files changed, 0 insertions, 409 deletions
diff --git a/manuals/chickadee/Matrices.html b/manuals/chickadee/Matrices.html
deleted file mode 100644
index bf65917..0000000
--- a/manuals/chickadee/Matrices.html
+++ /dev/null
@@ -1,409 +0,0 @@
-<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd">
-<html>
-<!-- Copyright (C) 2017-2023 David Thompson dthompson2@worcester.edu
-
-Permission is granted to copy, distribute and/or modify this document
-under the terms of the GNU Free Documentation License, Version 1.3
-or any later version published by the Free Software Foundation;
-with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts.
-A copy of the license is included in the section entitled "GNU
-Free Documentation License".
-
-A copy of the license is also available from the Free Software
-Foundation Web site at http://www.gnu.org/licenses/fdl.html.
-
-
-* Chickadee: (chickadee). Game programming toolkit for Guile.
-
-The document was typeset with
-http://www.texinfo.org/ (GNU Texinfo).
- -->
-<!-- Created by GNU Texinfo 6.7, http://www.gnu.org/software/texinfo/ -->
-<head>
-<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
-<title>Matrices (The Chickadee Game Toolkit)</title>
-
-<meta name="description" content="Matrices (The Chickadee Game Toolkit)" />
-<meta name="keywords" content="Matrices (The Chickadee Game Toolkit)" />
-<meta name="resource-type" content="document" />
-<meta name="distribution" content="global" />
-<meta name="Generator" content="makeinfo" />
-<link href="index.html" rel="start" title="Top" />
-<link href="Index.html" rel="index" title="Index" />
-<link href="index.html#SEC_Contents" rel="contents" title="Table of Contents" />
-<link href="Math.html" rel="up" title="Math" />
-<link href="Quaternions.html" rel="next" title="Quaternions" />
-<link href="Rectangles.html" rel="prev" title="Rectangles" />
-<style type="text/css">
-&lt;!--
-a.summary-letter {text-decoration: none}
-blockquote.indentedblock {margin-right: 0em}
-div.display {margin-left: 3.2em}
-div.example {margin-left: 3.2em}
-div.lisp {margin-left: 3.2em}
-kbd {font-style: oblique}
-pre.display {font-family: inherit}
-pre.format {font-family: inherit}
-pre.menu-comment {font-family: serif}
-pre.menu-preformatted {font-family: serif}
-span.nolinebreak {white-space: nowrap}
-span.roman {font-family: initial; font-weight: normal}
-span.sansserif {font-family: sans-serif; font-weight: normal}
-ul.no-bullet {list-style: none}
-@media (min-width: 1140px) {
- body {
- margin-left: 14rem;
- margin-right: 4rem;
- max-width: 52rem;
- }
-}
-
-@media (min-width: 800px) and (max-width: 1140px) {
- body {
- margin-left: 6rem;
- margin-right: 4rem;
- max-width: 52rem;
- }
-}
-
-@media (max-width: 800px) {
- body {
- margin: 1rem;
- }
-}
-
---&gt;
-</style>
-<link rel="stylesheet" type="text/css" href="https://dthompson.us/css/dthompson.css" />
-
-
-</head>
-
-<body lang="en">
-<span id="Matrices"></span><div class="header">
-<p>
-Next: <a href="Quaternions.html" accesskey="n" rel="next">Quaternions</a>, Previous: <a href="Rectangles.html" accesskey="p" rel="prev">Rectangles</a>, Up: <a href="Math.html" accesskey="u" rel="up">Math</a> &nbsp; [<a href="index.html#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="Index.html" title="Index" rel="index">Index</a>]</p>
-</div>
-<hr />
-<span id="Matrices-1"></span><h4 class="subsection">5.2.4 Matrices</h4>
-
-<p>The <code>(chickadee math matrix)</code> module provides an interface for
-working with the most common type of matrices in game development: 4x4
-transformation matrices.
-</p>
-<p><em>Another Note About Performance</em>
-</p>
-<p>Much like the vector API, the matrix API is commonly used in
-performance critical code paths. In order to reduce the amount of
-garbage generated and improve matrix multiplication performance, there
-are many procedures that perform in-place modifications of matrix
-objects.
-</p>
-<span id="g_t3x3-Matrices"></span><h4 class="subsubsection">5.2.4.1 3x3 Matrices</h4>
-
-<dl>
-<dt id="index-make_002dmatrix3">Procedure: <strong>make-matrix3</strong> <em>aa ab ac ba bb bc ca cb cc</em></dt>
-<dd><p>Return a new 3x3 initialized with the given 9 values in column-major
-format.
-</p></dd></dl>
-
-<dl>
-<dt id="index-make_002dnull_002dmatrix3">Procedure: <strong>make-null-matrix3</strong></dt>
-<dd><p>Return a new 3x3 matrix with all values initialized to 0.
-</p></dd></dl>
-
-<dl>
-<dt id="index-make_002didentity_002dmatrix3">Procedure: <strong>make-identity-matrix3</strong></dt>
-<dd><p>Return a new 3x3 identity matrix. Any matrix multiplied by the
-identity matrix yields the original matrix. This procedure is
-equivalent to the following code:
-</p>
-<div class="lisp">
-<pre class="lisp"><span class="syntax-open">(</span><span class="syntax-symbol">make-matrix3</span> <span class="syntax-symbol">1</span> <span class="syntax-symbol">0</span> <span class="syntax-symbol">0</span>
- <span class="syntax-symbol">0</span> <span class="syntax-symbol">1</span> <span class="syntax-symbol">0</span>
- <span class="syntax-symbol">0</span> <span class="syntax-symbol">0</span> <span class="syntax-symbol">1</span><span class="syntax-close">)</span>
-</pre></div>
-
-</dd></dl>
-
-<dl>
-<dt id="index-matrix3_003f">Procedure: <strong>matrix3?</strong> <em>obj</em></dt>
-<dd><p>Return <code>#t</code> if <var>obj</var> is a 3x3 matrix.
-</p></dd></dl>
-
-<dl>
-<dt id="index-matrix3_003d">Procedure: <strong>matrix3=</strong> <em>m1 m2</em></dt>
-<dd><p>Return <code>#t</code> if <var>m1</var> is the same matrix as <var>m2</var>.
-</p></dd></dl>
-
-<dl>
-<dt id="index-matrix3_002dcopy">Procedure: <strong>matrix3-copy</strong> <em>matrix</em></dt>
-<dd><p>Return a new 3x3 matrix that is a copy of <var>matrix</var>.
-</p></dd></dl>
-
-<dl>
-<dt id="index-matrix3_002a">Procedure: <strong>matrix3*</strong> <em>. matrices</em></dt>
-<dd><p>Return a new 3x3 matrix containing the product of multiplying all of
-the given <var>matrices</var>.
-</p>
-<p>Note: Remember that matrix multiplication is <strong>not</strong> commutative!
-</p></dd></dl>
-
-<dl>
-<dt id="index-matrix3_002dtranslate">Procedure: <strong>matrix3-translate</strong> <em>v</em></dt>
-<dd><p>Return a new 3x3 matrix that represents a translation by <var>v</var>, a 2D
-vector.
-</p></dd></dl>
-
-<dl>
-<dt id="index-matrix3_002dscale">Procedure: <strong>matrix3-scale</strong> <em>s</em></dt>
-<dd><p>Return a new 3x3 matrix that represents a scaling along the x and y
-axes by the scaling factor <var>s</var>, a number or 2D vector.
-</p></dd></dl>
-
-<dl>
-<dt id="index-matrix3_002drotate">Procedure: <strong>matrix3-rotate</strong> <em>angle</em></dt>
-<dd><p>Return a new 3x3 matrix that represents a rotation by <var>angle</var>
-radians.
-</p></dd></dl>
-
-<dl>
-<dt id="index-matrix3_002dtransform">Procedure: <strong>matrix3-transform</strong> <em>matrix v</em></dt>
-<dd><p>Return a new 2D vector that is <var>v</var> as transformed by the 3x3
-matrix <var>matrix</var>.
-</p></dd></dl>
-
-<dl>
-<dt id="index-matrix3_002dinverse">Procedure: <strong>matrix3-inverse</strong> <em>matrix</em></dt>
-<dd><p>Return the inverse of <var>matrix</var>.
-</p></dd></dl>
-
-<p>The following procedures perform in-place, destructive updates to 3x3
-matrix objects:
-</p>
-<dl>
-<dt id="index-matrix3_002dcopy_0021">Procedure: <strong>matrix3-copy!</strong> <em>src dest</em></dt>
-<dd><p>Copy the contents of matrix <var>src</var> to <var>dest</var>.
-</p></dd></dl>
-
-<dl>
-<dt id="index-matrix3_002didentity_0021">Procedure: <strong>matrix3-identity!</strong> <em>matrix</em></dt>
-<dd><p>Modify <var>matrix</var> in-place to contain the identity matrix.
-</p></dd></dl>
-
-<dl>
-<dt id="index-matrix3_002dmult_0021">Procedure: <strong>matrix3-mult!</strong> <em>dest a b</em></dt>
-<dd><p>Multiply the 3x3 matrix <var>a</var> by the 3x3 matrix <var>b</var> and store
-the result in the 3x3 matrix <var>dest</var>.
-</p></dd></dl>
-
-<dl>
-<dt id="index-matrix3_002dtranslate_0021">Procedure: <strong>matrix3-translate!</strong> <em>matrix v</em></dt>
-<dd><p>Modify <var>matrix</var> in-place to contain a translation by <var>v</var>, a 2D
-vector.
-</p></dd></dl>
-
-<dl>
-<dt id="index-matrix3_002dscale_0021">Procedure: <strong>matrix3-scale!</strong> <em>matrix s</em></dt>
-<dd><p>Modify <var>matrix</var> in-place to contain a scaling along the x and y
-axes by the scaling factor <var>s</var>, a number or 2D vector.
-</p></dd></dl>
-
-<dl>
-<dt id="index-matrix3_002drotate_0021">Procedure: <strong>matrix3-rotate!</strong> <em>matrix angle</em></dt>
-<dd><p>Modify <var>matrix</var> in-place to contain a rotation by <var>angle</var>
-radians.
-</p></dd></dl>
-
-<dl>
-<dt id="index-matrix3_002dtransform_0021">Procedure: <strong>matrix3-transform!</strong> <em>matrix v</em></dt>
-<dd><p>Modify the 2D vector <var>v</var> in-place to contain <var>v</var> as
-transformed by the 3x3 matrix <var>matrix</var>.
-</p></dd></dl>
-
-<dl>
-<dt id="index-matrix3_002dinverse_0021">Procedure: <strong>matrix3-inverse!</strong> <em>matrix target</em></dt>
-<dd><p>Compute the inverse of <var>matrix</var> and store the results in
-<var>target</var>.
-</p></dd></dl>
-
-<span id="g_t4x4-Matrices"></span><h4 class="subsubsection">5.2.4.2 4x4 Matrices</h4>
-
-<dl>
-<dt id="index-make_002dmatrix4">Procedure: <strong>make-matrix4</strong> <em>aa ab ac ad ba bb bc bd ca cb cc cd da db dc dd</em></dt>
-<dd>
-<p>Return a new 4x4 matrix initialized with the given 16 values in
-column-major format.
-</p></dd></dl>
-
-<dl>
-<dt id="index-make_002dnull_002dmatrix4">Procedure: <strong>make-null-matrix4</strong></dt>
-<dd><p>Return a new 4x4 matrix with all values initialized to 0.
-</p></dd></dl>
-
-<dl>
-<dt id="index-make_002didentity_002dmatrix4">Procedure: <strong>make-identity-matrix4</strong></dt>
-<dd><p>Return a new 4x4 identity matrix. Any matrix multiplied by the
-identity matrix yields the original matrix. This procedure is
-equivalent to the following code:
-</p>
-<div class="lisp">
-<pre class="lisp"><span class="syntax-open">(</span><span class="syntax-symbol">make-matrix4</span> <span class="syntax-symbol">1</span> <span class="syntax-symbol">0</span> <span class="syntax-symbol">0</span> <span class="syntax-symbol">0</span>
- <span class="syntax-symbol">0</span> <span class="syntax-symbol">1</span> <span class="syntax-symbol">0</span> <span class="syntax-symbol">0</span>
- <span class="syntax-symbol">0</span> <span class="syntax-symbol">0</span> <span class="syntax-symbol">1</span> <span class="syntax-symbol">0</span>
- <span class="syntax-symbol">0</span> <span class="syntax-symbol">0</span> <span class="syntax-symbol">0</span> <span class="syntax-symbol">1</span><span class="syntax-close">)</span>
-</pre></div>
-
-</dd></dl>
-
-<dl>
-<dt id="index-matrix4_003f">Procedure: <strong>matrix4?</strong> <em>obj</em></dt>
-<dd><p>Return <code>#t</code> if <var>obj</var> is a 4x4 matrix.
-</p></dd></dl>
-
-<dl>
-<dt id="index-matrix4_003d">Procedure: <strong>matrix4=</strong> <em>m1 m2</em></dt>
-<dd><p>Return <code>#t</code> if <var>m1</var> is the same matrix as <var>m2</var>.
-</p></dd></dl>
-
-<dl>
-<dt id="index-matrix4_002dcopy">Procedure: <strong>matrix4-copy</strong> <em>matrix</em></dt>
-<dd><p>Return a new 4x4 matrix that is a copy of <var>matrix</var>.
-</p></dd></dl>
-
-<dl>
-<dt id="index-matrix4_002a">Procedure: <strong>matrix4*</strong> <em>. matrices</em></dt>
-<dd><p>Return a new 4x4 matrix containing the product of multiplying all of
-the given <var>matrices</var>.
-</p>
-<p>Note: Remember that matrix multiplication is <strong>not</strong> commutative!
-</p></dd></dl>
-
-<dl>
-<dt id="index-matrix4_002dinverse">Procedure: <strong>matrix4-inverse</strong> <em>matrix</em></dt>
-<dd><p>Return the inverse of <var>matrix</var>.
-</p>
-<p>A matrix multiplied by its inverse is the identity matrix, thought not
-always exactly due to the nature of floating point numbers.
-</p></dd></dl>
-
-<dl>
-<dt id="index-orthographic_002dprojection">Procedure: <strong>orthographic-projection</strong> <em>left right top bottom near far</em></dt>
-<dd>
-<p>Return a new 4x4 matrix that represents an orthographic (2D)
-projection for the horizontal clipping plane <var>top</var> and
-<var>bottom</var>, the vertical clipping plane <var>top</var> and <var>bottom</var>,
-and the depth clipping plane <var>near</var> and <var>far</var>.
-</p></dd></dl>
-
-<dl>
-<dt id="index-perspective_002dprojection">Procedure: <strong>perspective-projection</strong> <em>fov aspect-ratio near far</em></dt>
-<dd>
-<p>Return a new 4x4 matrix that represents a perspective (3D) projection
-with a field of vision of <var>fov</var> radians, an aspect ratio of
-<var>aspect-ratio</var>, and a depth clipping plane defined by <var>near</var>
-and <var>far</var>.
-</p></dd></dl>
-
-<dl>
-<dt id="index-matrix4_002dtranslate">Procedure: <strong>matrix4-translate</strong> <em>x</em></dt>
-<dd><p>Return a new 4x4 matrix that represents a translation by <var>x</var>, a 2D
-vector, a 3D vector, or a rectangle (in which case the bottom-left
-corner of the rectangle is used).
-</p></dd></dl>
-
-<dl>
-<dt id="index-matrix4_002dscale">Procedure: <strong>matrix4-scale</strong> <em>s</em></dt>
-<dd><p>Return a new 4x4 matrix that represents a scaling along the X, Y, and
-Z axes by the scaling factor <var>s</var>, a real number.
-</p></dd></dl>
-
-<dl>
-<dt id="index-matrix4_002drotate">Procedure: <strong>matrix4-rotate</strong> <em>q</em></dt>
-<dd><p>Return a new 4x4 matrix that represents a rotation about an arbitrary
-axis defined by the quaternion <var>q</var>.
-</p></dd></dl>
-
-<dl>
-<dt id="index-matrix4_002drotate_002dz">Procedure: <strong>matrix4-rotate-z</strong> <em>theta</em></dt>
-<dd><p>Return a new 4x4 matrix that represents a rotation about the Z axis by
-<var>theta</var> radians.
-</p></dd></dl>
-
-<p>The following procedures perform in-place, destructive updates to 4x4
-matrix objects:
-</p>
-<dl>
-<dt id="index-matrix4_002dcopy_0021">Procedure: <strong>matrix4-copy!</strong> <em>src dest</em></dt>
-<dd><p>Copy the contents of matrix <var>src</var> to <var>dest</var>.
-</p></dd></dl>
-
-<dl>
-<dt id="index-matrix4_002didentity_0021">Procedure: <strong>matrix4-identity!</strong> <em>matrix</em></dt>
-<dd><p>Modify <var>matrix</var> in-place to contain the identity matrix.
-</p></dd></dl>
-
-<dl>
-<dt id="index-matrix4_002dmult_0021">Procedure: <strong>matrix4-mult!</strong> <em>dest a b</em></dt>
-<dd><p>Multiply the 4x4 matrix <var>a</var> by the 4x4 matrix <var>b</var> and store
-the result in the 4x4 matrix <var>dest</var>.
-</p></dd></dl>
-
-<dl>
-<dt id="index-matrix4_002dinverse_0021">Procedure: <strong>matrix4-inverse!</strong> <em>matrix target</em></dt>
-<dd><p>Compute the inverse of <var>matrix</var> and store the result in
-<var>target</var>.
-</p></dd></dl>
-
-<dl>
-<dt id="index-matrix4_002dtranslate_0021">Procedure: <strong>matrix4-translate!</strong> <em>matrix x</em></dt>
-<dd><p>Modify <var>matrix</var> in-place to contain a translation by <var>x</var>, a 2D
-vector, a 3D vector, or a rectangle (in which case the bottom-left
-corner of the rectangle is used).
-</p></dd></dl>
-
-<dl>
-<dt id="index-matrix4_002dscale_0021">Procedure: <strong>matrix4-scale!</strong> <em>matrix s</em></dt>
-<dd><p>Modify <var>matrix</var> in-place to contain a scaling along the X, Y, and
-Z axes by the scaling factor <var>s</var>, a real number.
-</p></dd></dl>
-
-<dl>
-<dt id="index-matrix4_002drotate_0021">Procedure: <strong>matrix4-rotate!</strong> <em>matrix q</em></dt>
-<dd><p>Modify <var>matrix</var> in-place to contain a rotation about an arbitrary
-axis defined by the quaternion <var>q</var>.
-</p></dd></dl>
-
-<dl>
-<dt id="index-matrix4_002drotate_002dz_0021">Procedure: <strong>matrix4-rotate-z!</strong> <em>matrix theta</em></dt>
-<dd><p>Modify <var>matrix</var> in-place to contain a rotation about the Z axis by
-<var>theta</var> radians.
-</p></dd></dl>
-
-<dl>
-<dt id="index-matrix4_002d2d_002dtransform_0021">Procedure: <strong>matrix4-2d-transform!</strong> <em>matrix [#:origin] [#:position] [#:rotation] [#:scale] [#:shear]</em></dt>
-<dd>
-<p>Modify <var>matrix</var> in-place to contain the transformation described
-by <var>position</var>, a 2D vector or rectangle, <var>rotation</var>, a scalar
-representing a rotation about the Z axis, <var>scale</var>, a 2D vector,
-and <var>shear</var>, a 2D vector. The transformation happens with respect
-to <var>origin</var>, a 2D vector. If an argument is not provided, that
-particular transformation will not be included in the result.
-</p></dd></dl>
-
-<dl>
-<dt id="index-matrix4_002dtransform_0021">Procedure: <strong>matrix4-transform!</strong> <em>matrix v</em></dt>
-<dd><p>Modify the 2D vector <var>v</var> in-place by multiplying it by the 4x4
-matrix <var>matrix</var>.
-</p></dd></dl>
-
-<hr />
-<div class="header">
-<p>
-Next: <a href="Quaternions.html" accesskey="n" rel="next">Quaternions</a>, Previous: <a href="Rectangles.html" accesskey="p" rel="prev">Rectangles</a>, Up: <a href="Math.html" accesskey="u" rel="up">Math</a> &nbsp; [<a href="index.html#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="Index.html" title="Index" rel="index">Index</a>]</p>
-</div>
-
-
-
-</body>
-</html>