summaryrefslogtreecommitdiff
path: root/manuals/chickadee/Matrices.html
blob: bf65917cefca5d65532443576e08438ffd3f7c39 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd">
<html>
<!--  Copyright (C) 2017-2023  David Thompson dthompson2@worcester.edu

Permission is granted to copy, distribute and/or modify this document
under the terms of the GNU Free Documentation License, Version 1.3
or any later version published by the Free Software Foundation;
with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts.
A copy of the license is included in the section entitled "GNU
Free Documentation License".

A copy of the license is also available from the Free Software
Foundation Web site at http://www.gnu.org/licenses/fdl.html.


* Chickadee: (chickadee).     Game programming toolkit for Guile.

The document was typeset with
http://www.texinfo.org/ (GNU Texinfo).
  -->
<!--  Created by GNU Texinfo 6.7, http://www.gnu.org/software/texinfo/  -->
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
<title>Matrices (The Chickadee Game Toolkit)</title>

<meta name="description" content="Matrices (The Chickadee Game Toolkit)" />
<meta name="keywords" content="Matrices (The Chickadee Game Toolkit)" />
<meta name="resource-type" content="document" />
<meta name="distribution" content="global" />
<meta name="Generator" content="makeinfo" />
<link href="index.html" rel="start" title="Top" />
<link href="Index.html" rel="index" title="Index" />
<link href="index.html#SEC_Contents" rel="contents" title="Table of Contents" />
<link href="Math.html" rel="up" title="Math" />
<link href="Quaternions.html" rel="next" title="Quaternions" />
<link href="Rectangles.html" rel="prev" title="Rectangles" />
<style type="text/css">
&lt;!--
a.summary-letter {text-decoration: none}
blockquote.indentedblock {margin-right: 0em}
div.display {margin-left: 3.2em}
div.example {margin-left: 3.2em}
div.lisp {margin-left: 3.2em}
kbd {font-style: oblique}
pre.display {font-family: inherit}
pre.format {font-family: inherit}
pre.menu-comment {font-family: serif}
pre.menu-preformatted {font-family: serif}
span.nolinebreak {white-space: nowrap}
span.roman {font-family: initial; font-weight: normal}
span.sansserif {font-family: sans-serif; font-weight: normal}
ul.no-bullet {list-style: none}
@media (min-width: 1140px) {
    body {
        margin-left: 14rem;
        margin-right: 4rem;
        max-width: 52rem;
    }
}

@media (min-width: 800px) and (max-width: 1140px) {
    body {
        margin-left: 6rem;
        margin-right: 4rem;
        max-width: 52rem;
    }
}

@media (max-width: 800px) {
    body {
        margin: 1rem;
    }
}

--&gt;
</style>
<link rel="stylesheet" type="text/css" href="https://dthompson.us/css/dthompson.css" />


</head>

<body lang="en">
<span id="Matrices"></span><div class="header">
<p>
Next: <a href="Quaternions.html" accesskey="n" rel="next">Quaternions</a>, Previous: <a href="Rectangles.html" accesskey="p" rel="prev">Rectangles</a>, Up: <a href="Math.html" accesskey="u" rel="up">Math</a> &nbsp; [<a href="index.html#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="Index.html" title="Index" rel="index">Index</a>]</p>
</div>
<hr />
<span id="Matrices-1"></span><h4 class="subsection">5.2.4 Matrices</h4>

<p>The <code>(chickadee math matrix)</code> module provides an interface for
working with the most common type of matrices in game development: 4x4
transformation matrices.
</p>
<p><em>Another Note About Performance</em>
</p>
<p>Much like the vector API, the matrix API is commonly used in
performance critical code paths.  In order to reduce the amount of
garbage generated and improve matrix multiplication performance, there
are many procedures that perform in-place modifications of matrix
objects.
</p>
<span id="g_t3x3-Matrices"></span><h4 class="subsubsection">5.2.4.1 3x3 Matrices</h4>

<dl>
<dt id="index-make_002dmatrix3">Procedure: <strong>make-matrix3</strong> <em>aa ab ac ba bb bc ca cb cc</em></dt>
<dd><p>Return a new 3x3 initialized with the given 9 values in column-major
format.
</p></dd></dl>

<dl>
<dt id="index-make_002dnull_002dmatrix3">Procedure: <strong>make-null-matrix3</strong></dt>
<dd><p>Return a new 3x3 matrix with all values initialized to 0.
</p></dd></dl>

<dl>
<dt id="index-make_002didentity_002dmatrix3">Procedure: <strong>make-identity-matrix3</strong></dt>
<dd><p>Return a new 3x3 identity matrix.  Any matrix multiplied by the
identity matrix yields the original matrix.  This procedure is
equivalent to the following code:
</p>
<div class="lisp">
<pre class="lisp"><span class="syntax-open">(</span><span class="syntax-symbol">make-matrix3</span> <span class="syntax-symbol">1</span> <span class="syntax-symbol">0</span> <span class="syntax-symbol">0</span>
              <span class="syntax-symbol">0</span> <span class="syntax-symbol">1</span> <span class="syntax-symbol">0</span>
              <span class="syntax-symbol">0</span> <span class="syntax-symbol">0</span> <span class="syntax-symbol">1</span><span class="syntax-close">)</span>
</pre></div>

</dd></dl>

<dl>
<dt id="index-matrix3_003f">Procedure: <strong>matrix3?</strong> <em>obj</em></dt>
<dd><p>Return <code>#t</code> if <var>obj</var> is a 3x3 matrix.
</p></dd></dl>

<dl>
<dt id="index-matrix3_003d">Procedure: <strong>matrix3=</strong> <em>m1 m2</em></dt>
<dd><p>Return <code>#t</code> if <var>m1</var> is the same matrix as <var>m2</var>.
</p></dd></dl>

<dl>
<dt id="index-matrix3_002dcopy">Procedure: <strong>matrix3-copy</strong> <em>matrix</em></dt>
<dd><p>Return a new 3x3 matrix that is a copy of <var>matrix</var>.
</p></dd></dl>

<dl>
<dt id="index-matrix3_002a">Procedure: <strong>matrix3*</strong> <em>. matrices</em></dt>
<dd><p>Return a new 3x3 matrix containing the product of multiplying all of
the given <var>matrices</var>.
</p>
<p>Note: Remember that matrix multiplication is <strong>not</strong> commutative!
</p></dd></dl>

<dl>
<dt id="index-matrix3_002dtranslate">Procedure: <strong>matrix3-translate</strong> <em>v</em></dt>
<dd><p>Return a new 3x3 matrix that represents a translation by <var>v</var>, a 2D
vector.
</p></dd></dl>

<dl>
<dt id="index-matrix3_002dscale">Procedure: <strong>matrix3-scale</strong> <em>s</em></dt>
<dd><p>Return a new 3x3 matrix that represents a scaling along the x and y
axes by the scaling factor <var>s</var>, a number or 2D vector.
</p></dd></dl>

<dl>
<dt id="index-matrix3_002drotate">Procedure: <strong>matrix3-rotate</strong> <em>angle</em></dt>
<dd><p>Return a new 3x3 matrix that represents a rotation by <var>angle</var>
radians.
</p></dd></dl>

<dl>
<dt id="index-matrix3_002dtransform">Procedure: <strong>matrix3-transform</strong> <em>matrix v</em></dt>
<dd><p>Return a new 2D vector that is <var>v</var> as transformed by the 3x3
matrix <var>matrix</var>.
</p></dd></dl>

<dl>
<dt id="index-matrix3_002dinverse">Procedure: <strong>matrix3-inverse</strong> <em>matrix</em></dt>
<dd><p>Return the inverse of <var>matrix</var>.
</p></dd></dl>

<p>The following procedures perform in-place, destructive updates to 3x3
matrix objects:
</p>
<dl>
<dt id="index-matrix3_002dcopy_0021">Procedure: <strong>matrix3-copy!</strong> <em>src dest</em></dt>
<dd><p>Copy the contents of matrix <var>src</var> to <var>dest</var>.
</p></dd></dl>

<dl>
<dt id="index-matrix3_002didentity_0021">Procedure: <strong>matrix3-identity!</strong> <em>matrix</em></dt>
<dd><p>Modify <var>matrix</var> in-place to contain the identity matrix.
</p></dd></dl>

<dl>
<dt id="index-matrix3_002dmult_0021">Procedure: <strong>matrix3-mult!</strong> <em>dest a b</em></dt>
<dd><p>Multiply the 3x3 matrix <var>a</var> by the 3x3 matrix <var>b</var> and store
the result in the 3x3 matrix <var>dest</var>.
</p></dd></dl>

<dl>
<dt id="index-matrix3_002dtranslate_0021">Procedure: <strong>matrix3-translate!</strong> <em>matrix v</em></dt>
<dd><p>Modify <var>matrix</var> in-place to contain a translation by <var>v</var>, a 2D
vector.
</p></dd></dl>

<dl>
<dt id="index-matrix3_002dscale_0021">Procedure: <strong>matrix3-scale!</strong> <em>matrix s</em></dt>
<dd><p>Modify <var>matrix</var> in-place to contain a scaling along the x and y
axes by the scaling factor <var>s</var>, a number or 2D vector.
</p></dd></dl>

<dl>
<dt id="index-matrix3_002drotate_0021">Procedure: <strong>matrix3-rotate!</strong> <em>matrix angle</em></dt>
<dd><p>Modify <var>matrix</var> in-place to contain a rotation by <var>angle</var>
radians.
</p></dd></dl>

<dl>
<dt id="index-matrix3_002dtransform_0021">Procedure: <strong>matrix3-transform!</strong> <em>matrix v</em></dt>
<dd><p>Modify the 2D vector <var>v</var> in-place to contain <var>v</var> as
transformed by the 3x3 matrix <var>matrix</var>.
</p></dd></dl>

<dl>
<dt id="index-matrix3_002dinverse_0021">Procedure: <strong>matrix3-inverse!</strong> <em>matrix target</em></dt>
<dd><p>Compute the inverse of <var>matrix</var> and store the results in
<var>target</var>.
</p></dd></dl>

<span id="g_t4x4-Matrices"></span><h4 class="subsubsection">5.2.4.2 4x4 Matrices</h4>

<dl>
<dt id="index-make_002dmatrix4">Procedure: <strong>make-matrix4</strong> <em>aa ab ac ad                                 ba bb bc bd                                 ca cb cc cd                                 da db dc dd</em></dt>
<dd>
<p>Return a new 4x4 matrix initialized with the given 16 values in
column-major format.
</p></dd></dl>

<dl>
<dt id="index-make_002dnull_002dmatrix4">Procedure: <strong>make-null-matrix4</strong></dt>
<dd><p>Return a new 4x4 matrix with all values initialized to 0.
</p></dd></dl>

<dl>
<dt id="index-make_002didentity_002dmatrix4">Procedure: <strong>make-identity-matrix4</strong></dt>
<dd><p>Return a new 4x4 identity matrix.  Any matrix multiplied by the
identity matrix yields the original matrix.  This procedure is
equivalent to the following code:
</p>
<div class="lisp">
<pre class="lisp"><span class="syntax-open">(</span><span class="syntax-symbol">make-matrix4</span> <span class="syntax-symbol">1</span> <span class="syntax-symbol">0</span> <span class="syntax-symbol">0</span> <span class="syntax-symbol">0</span>
              <span class="syntax-symbol">0</span> <span class="syntax-symbol">1</span> <span class="syntax-symbol">0</span> <span class="syntax-symbol">0</span>
              <span class="syntax-symbol">0</span> <span class="syntax-symbol">0</span> <span class="syntax-symbol">1</span> <span class="syntax-symbol">0</span>
              <span class="syntax-symbol">0</span> <span class="syntax-symbol">0</span> <span class="syntax-symbol">0</span> <span class="syntax-symbol">1</span><span class="syntax-close">)</span>
</pre></div>

</dd></dl>

<dl>
<dt id="index-matrix4_003f">Procedure: <strong>matrix4?</strong> <em>obj</em></dt>
<dd><p>Return <code>#t</code> if <var>obj</var> is a 4x4 matrix.
</p></dd></dl>

<dl>
<dt id="index-matrix4_003d">Procedure: <strong>matrix4=</strong> <em>m1 m2</em></dt>
<dd><p>Return <code>#t</code> if <var>m1</var> is the same matrix as <var>m2</var>.
</p></dd></dl>

<dl>
<dt id="index-matrix4_002dcopy">Procedure: <strong>matrix4-copy</strong> <em>matrix</em></dt>
<dd><p>Return a new 4x4 matrix that is a copy of <var>matrix</var>.
</p></dd></dl>

<dl>
<dt id="index-matrix4_002a">Procedure: <strong>matrix4*</strong> <em>. matrices</em></dt>
<dd><p>Return a new 4x4 matrix containing the product of multiplying all of
the given <var>matrices</var>.
</p>
<p>Note: Remember that matrix multiplication is <strong>not</strong> commutative!
</p></dd></dl>

<dl>
<dt id="index-matrix4_002dinverse">Procedure: <strong>matrix4-inverse</strong> <em>matrix</em></dt>
<dd><p>Return the inverse of <var>matrix</var>.
</p>
<p>A matrix multiplied by its inverse is the identity matrix, thought not
always exactly due to the nature of floating point numbers.
</p></dd></dl>

<dl>
<dt id="index-orthographic_002dprojection">Procedure: <strong>orthographic-projection</strong> <em>left right top bottom near far</em></dt>
<dd>
<p>Return a new 4x4 matrix that represents an orthographic (2D)
projection for the horizontal clipping plane <var>top</var> and
<var>bottom</var>, the vertical clipping plane <var>top</var> and <var>bottom</var>,
and the depth clipping plane <var>near</var> and <var>far</var>.
</p></dd></dl>

<dl>
<dt id="index-perspective_002dprojection">Procedure: <strong>perspective-projection</strong> <em>fov aspect-ratio near far</em></dt>
<dd>
<p>Return a new 4x4 matrix that represents a perspective (3D) projection
with a field of vision of <var>fov</var> radians, an aspect ratio of
<var>aspect-ratio</var>, and a depth clipping plane defined by <var>near</var>
and <var>far</var>.
</p></dd></dl>

<dl>
<dt id="index-matrix4_002dtranslate">Procedure: <strong>matrix4-translate</strong> <em>x</em></dt>
<dd><p>Return a new 4x4 matrix that represents a translation by <var>x</var>, a 2D
vector, a 3D vector, or a rectangle (in which case the bottom-left
corner of the rectangle is used).
</p></dd></dl>

<dl>
<dt id="index-matrix4_002dscale">Procedure: <strong>matrix4-scale</strong> <em>s</em></dt>
<dd><p>Return a new 4x4 matrix that represents a scaling along the X, Y, and
Z axes by the scaling factor <var>s</var>, a real number.
</p></dd></dl>

<dl>
<dt id="index-matrix4_002drotate">Procedure: <strong>matrix4-rotate</strong> <em>q</em></dt>
<dd><p>Return a new 4x4 matrix that represents a rotation about an arbitrary
axis defined by the quaternion <var>q</var>.
</p></dd></dl>

<dl>
<dt id="index-matrix4_002drotate_002dz">Procedure: <strong>matrix4-rotate-z</strong> <em>theta</em></dt>
<dd><p>Return a new 4x4 matrix that represents a rotation about the Z axis by
<var>theta</var> radians.
</p></dd></dl>

<p>The following procedures perform in-place, destructive updates to 4x4
matrix objects:
</p>
<dl>
<dt id="index-matrix4_002dcopy_0021">Procedure: <strong>matrix4-copy!</strong> <em>src dest</em></dt>
<dd><p>Copy the contents of matrix <var>src</var> to <var>dest</var>.
</p></dd></dl>

<dl>
<dt id="index-matrix4_002didentity_0021">Procedure: <strong>matrix4-identity!</strong> <em>matrix</em></dt>
<dd><p>Modify <var>matrix</var> in-place to contain the identity matrix.
</p></dd></dl>

<dl>
<dt id="index-matrix4_002dmult_0021">Procedure: <strong>matrix4-mult!</strong> <em>dest a b</em></dt>
<dd><p>Multiply the 4x4 matrix <var>a</var> by the 4x4 matrix <var>b</var> and store
the result in the 4x4 matrix <var>dest</var>.
</p></dd></dl>

<dl>
<dt id="index-matrix4_002dinverse_0021">Procedure: <strong>matrix4-inverse!</strong> <em>matrix target</em></dt>
<dd><p>Compute the inverse of <var>matrix</var> and store the result in
<var>target</var>.
</p></dd></dl>

<dl>
<dt id="index-matrix4_002dtranslate_0021">Procedure: <strong>matrix4-translate!</strong> <em>matrix x</em></dt>
<dd><p>Modify <var>matrix</var> in-place to contain a translation by <var>x</var>, a 2D
vector, a 3D vector, or a rectangle (in which case the bottom-left
corner of the rectangle is used).
</p></dd></dl>

<dl>
<dt id="index-matrix4_002dscale_0021">Procedure: <strong>matrix4-scale!</strong> <em>matrix s</em></dt>
<dd><p>Modify <var>matrix</var> in-place to contain a scaling along the X, Y, and
Z axes by the scaling factor <var>s</var>, a real number.
</p></dd></dl>

<dl>
<dt id="index-matrix4_002drotate_0021">Procedure: <strong>matrix4-rotate!</strong> <em>matrix q</em></dt>
<dd><p>Modify <var>matrix</var> in-place to contain a rotation about an arbitrary
axis defined by the quaternion <var>q</var>.
</p></dd></dl>

<dl>
<dt id="index-matrix4_002drotate_002dz_0021">Procedure: <strong>matrix4-rotate-z!</strong> <em>matrix theta</em></dt>
<dd><p>Modify <var>matrix</var> in-place to contain a rotation about the Z axis by
<var>theta</var> radians.
</p></dd></dl>

<dl>
<dt id="index-matrix4_002d2d_002dtransform_0021">Procedure: <strong>matrix4-2d-transform!</strong> <em>matrix [#:origin]                                          [#:position] [#:rotation]                                          [#:scale] [#:shear]</em></dt>
<dd>
<p>Modify <var>matrix</var> in-place to contain the transformation described
by <var>position</var>, a 2D vector or rectangle, <var>rotation</var>, a scalar
representing a rotation about the Z axis, <var>scale</var>, a 2D vector,
and <var>shear</var>, a 2D vector.  The transformation happens with respect
to <var>origin</var>, a 2D vector.  If an argument is not provided, that
particular transformation will not be included in the result.
</p></dd></dl>

<dl>
<dt id="index-matrix4_002dtransform_0021">Procedure: <strong>matrix4-transform!</strong> <em>matrix v</em></dt>
<dd><p>Modify the 2D vector <var>v</var> in-place by multiplying it by the 4x4
matrix <var>matrix</var>.
</p></dd></dl>

<hr />
<div class="header">
<p>
Next: <a href="Quaternions.html" accesskey="n" rel="next">Quaternions</a>, Previous: <a href="Rectangles.html" accesskey="p" rel="prev">Rectangles</a>, Up: <a href="Math.html" accesskey="u" rel="up">Math</a> &nbsp; [<a href="index.html#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="Index.html" title="Index" rel="index">Index</a>]</p>
</div>



</body>
</html>