blob: 93bc787a1ecb5d3a2f536004f126f155c4687f9b (
plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
|
;;; Copyright © 2021 Gerald Sussman and Chris Hanson
;;; Copyright © 2022 David Thompson <dthompson2@worcester.edu>
;;;
;;; This program is free software: you can redistribute it and/or
;;; modify it under the terms of the GNU General Public License as
;;; published by the Free Software Foundation, either version 3 of the
;;; License, or (at your option) any later version.
;;;
;;; This program is distributed in the hope that it will be useful,
;;; but WITHOUT ANY WARRANTY; without even the implied warranty of
;;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
;;; General Public License for more details.
;;;
;;; You should have received a copy of the GNU General Public License
;;; along with this program. If not, see
;;; <http://www.gnu.org/licenses/>.
;; 2.4.1 A monolithic implementation
(use-modules (srfi srfi-1)
(srfi srfi-9))
;; A checkers domain model
(define %checkers-board-width 8)
(define %checkers-board-height 8)
(define-record-type <coords>
(coords x y)
coords?
(x coords-x)
(y coords-y))
(define (coords+ a b)
(coords (+ (coords-x a) (coords-x b))
(+ (coords-y a) (coords-y b))))
(define-record-type <piece>
(make-piece coords owner king?)
piece?
(coords piece-coords)
(owner piece-owner)
(king? piece-king?))
(define (player-piece? piece)
(eq? (piece-owner piece) 'player))
(define (opponent-piece? piece)
(eq? (piece-owner piece) 'opponent))
(define (should-be-crowned? piece)
(and (not (piece-king? piece))
(= (coords-y (piece-coords piece))
(if (player-piece? piece)
(- %checkers-board-height 1)
0))))
(define (crown-piece piece)
(make-piece (piece-coords piece)
(piece-owner piece)
#t))
(define (possible-directions piece)
(cond
((piece-king? piece)
(list (coords 1 1)
(coords -1 1)
(coords -1 -1)
(coords 1 -1)))
((player-piece? piece)
(list (coords 1 1)
(coords -1 1)))
(else
(list (coords 1 -1)
(coords -1 -1)))))
(define (move-piece piece new-coords)
(make-piece new-coords
(piece-owner piece)
(piece-king? piece)))
(define-record-type <board>
(make-board pieces)
board?
(pieces board-pieces))
(define (current-pieces board)
(filter player-piece?
(board-pieces board)))
(define (is-position-on-board? coords board)
(and (>= (coords-x coords) 0)
(< (coords-x coords) %checkers-board-width)
(>= (coords-y coords) 0)
(< (coords-y coords) %checkers-board-height)))
(define (board-get coords board)
(find (lambda (piece)
(equal? coords (piece-coords piece)))
(board-pieces board)))
(define (board-replace-piece new-piece old-piece board)
(make-board (cons new-piece (delq old-piece (board-pieces board)))))
(define (board-remove-piece piece board)
(make-board (delq piece (board-pieces board))))
(define (position-info coords board)
(let ((piece (board-get coords board)))
(cond
((not piece) 'unoccupied)
((player-piece? piece) 'occupied-by-self)
((opponent-piece? piece) 'occupied-by-opponent))))
(define (is-position-unoccupied? coords board)
(eq? (position-info coords board) 'unoccupied))
(define (is-position-occupied-by-self? coords board)
(eq? (position-info coords board) 'occupied-by-self))
(define (is-position-occupied-by-opponent? coords board)
(eq? (position-info coords board) 'occupied-by-opponent))
;; A checkers referee
(define-record-type <step>
(make-step from to board jump?)
step?
(from step-from)
(to step-to)
(board step-board)
(jump? step-jump?))
(define (replace-piece new-piece old-piece board)
(let ((new-board (board-replace-piece new-piece old-piece board)))
(make-step old-piece new-piece new-board #f)))
(define (make-simple-move new-coords piece board)
(replace-piece (move-piece piece new-coords) piece board))
(define (make-jump new-coords jumped-coords piece board)
(let* ((new-piece (move-piece piece new-coords))
(new-board (make-board (remove (lambda (piece)
(equal? (piece-coords piece)
jumped-coords))
(board-pieces board)))))
(make-step piece new-piece new-board #t)))
(define (path-contains-jumps? path)
(any step-jump? path))
(define (try-step piece board direction path)
(let ((new-coords
(coords+ (piece-coords piece) direction)))
(and (is-position-on-board? new-coords board)
(case (position-info new-coords board)
((unoccupied)
(and (not (path-contains-jumps? path))
(cons (make-simple-move new-coords piece board)
path)))
((occupied-by-opponent)
(let ((landing (coords+ new-coords direction)))
(and (is-position-on-board? landing board)
(is-position-unoccupied? landing board)
(cons (make-jump landing new-coords piece board)
path))))
((occupied-by-self) #f)
(else (error "Unknown position info"))))))
(define (compute-next-steps piece board path)
(filter-map (lambda (direction)
(try-step piece board direction path))
(possible-directions piece)))
(define (evolve-jumps paths)
(append-map (lambda (path)
(let ((paths (let ((step (car path)))
(compute-next-steps (step-to step)
(step-board step)
path))))
(if (null? paths)
(list path)
;; continue jumping if possible
(evolve-jumps paths))))
paths))
(define (evolve-paths piece board)
(let* ((paths (compute-next-steps piece board '()))
(jumps (filter path-contains-jumps? paths)))
(if (null? jumps)
paths
(evolve-jumps jumps))))
(define (mandate-jumps paths)
(let ((jumps (filter path-contains-jumps? paths)))
(if (null? jumps)
paths
jumps)))
(define (crown-kings paths)
(map (lambda (path)
(let ((piece (step-to (car path))))
(if (should-be-crowned? piece)
(cons (replace-piece (crown-piece piece)
piece
(step-board (car path)))
path)
path)))
paths))
(define (generate-moves board)
(crown-kings
(mandate-jumps
(append-map (lambda (piece)
(evolve-paths piece board))
(current-pieces board)))))
;; A quick thing I made up to make verifying that the paths are what I
;; expect a little easier.
(define (describe-path path)
(display (length path))
(display " steps:")
(newline)
(for-each (lambda (step)
(let ((from (step-from step))
(to (step-to step)))
(unless (eq? (piece-coords from) (piece-coords to))
(display "piece moved from (")
(display (coords-x (piece-coords from)))
(display ", ")
(display (coords-y (piece-coords from)))
(display ") to (")
(display (coords-x (piece-coords to)))
(display ", ")
(display (coords-y (piece-coords to)))
(display "); "))
(when (and (not (piece-king? from)) (piece-king? to))
(display "king; "))
(when (step-jump? step)
(display "jump; "))
(newline)))
(reverse path)))
;; Example:
;;
;; $: player piece
;; o: opponent piece
;;
;; ______o_
;; ___o_o__
;; ____$___
;; ________
;; ________
;; ________
;; ________
;; ________
;;
;; Should result in 1 path of 2 steps: a jump and then a king.
(for-each describe-path
(generate-moves
(make-board (list (make-piece (coords 4 5) 'player #f)
(make-piece (coords 6 7) 'opponent #f)
(make-piece (coords 3 6) 'opponent #f)
(make-piece (coords 5 6) 'opponent #f)))))
;; 2.4.2 Factoring out the domain
(define-record-type <piece>
(make-piece type coords owner)
piece?
(type piece-type)
(coords piece-coords)
(owner piece-owner))
(define (player-piece? piece)
(eq? (piece-owner piece) 'player))
(define (opponent-piece? piece)
(eq? (piece-owner piece) 'opponent))
(define (move-piece piece new-coords)
(make-piece (piece-type piece)
new-coords
(piece-owner piece)))
(define (piece-new-type piece type)
(make-piece type (piece-coords piece) (piece-owner piece)))
(define (piece-king? piece)
(eq? (piece-type piece) 'king))
(define (should-be-crowned? piece)
(and (not (piece-king? piece))
(= (coords-y (piece-coords piece))
(if (player-piece? piece)
(- %checkers-board-height 1)
0))))
(define (possible-directions piece)
(cond
((piece-king? piece)
(list (coords 1 1)
(coords -1 1)
(coords -1 -1)
(coords 1 -1)))
((player-piece? piece)
(list (coords 1 1)
(coords -1 1)))
(else
(list (coords 1 -1)
(coords -1 -1)))))
(define (crown-piece piece)
(piece-new-type piece 'king))
(define (board-get coords board)
(find (lambda (piece)
(equal? coords (piece-coords piece)))
(board-pieces board)))
(define (position-info coords board)
(let ((piece (board-get coords board)))
(cond
((not piece) 'unoccupied)
((player-piece? piece) 'occupied-by-self)
((opponent-piece? piece) 'occupied-by-opponent))))
(define-record-type <change>
(make-change board piece flags)
change?
(board get-board)
(piece get-piece)
(flags get-flags))
(define-record-type <pmove>
(make-pmove initial-board initial-piece changes)
pmove?
(initial-board initial-board)
(initial-piece initial-piece)
(changes pmove-changes))
(define (initial-pmove board piece)
(make-pmove board piece '()))
(define (is-pmove-empty? pmove)
(null? (pmove-changes pmove)))
(define (is-pmove-finished? pmove)
(and (not (is-pmove-empty? pmove))
(pair? (memq 'finish (get-flags (car (pmove-changes pmove)))))))
(define (most-recent-change pmove)
(car (pmove-changes pmove)))
(define (current-board pmove)
(if (is-pmove-empty? pmove)
(initial-board pmove)
(get-board (most-recent-change pmove))))
(define (current-piece pmove)
(if (is-pmove-empty? pmove)
(initial-piece pmove)
(get-piece (most-recent-change pmove))))
(define (add-change change pmove)
(make-pmove (initial-board pmove)
(initial-piece pmove)
(cons change (pmove-changes pmove))))
(define (update-piece procedure pmove)
(let* ((new-piece (procedure (current-piece pmove)))
(new-board (board-replace-piece new-piece
(current-piece pmove)
(current-board pmove))))
(add-change (make-change new-board new-piece '(update))
pmove)))
(define (new-piece-position coords pmove)
(update-piece (lambda (piece) (move-piece piece coords)) pmove))
(define (finish-move pmove)
(add-change (make-change (current-board pmove)
(current-piece pmove)
'(finish))
pmove))
(define (captures-pieces? pmove)
(any (lambda (change)
(memq 'capture (get-flags change)))
(pmove-changes pmove)))
(define (capture-piece-at coords pmove)
(let ((board (current-board pmove)))
(add-change (make-change (board-remove-piece (board-get coords board) board)
(current-piece pmove)
'(capture))
pmove)))
(define (evolve-pmove pmove evolution-rules)
(append-map (lambda (new-pmove)
(if (is-pmove-finished? new-pmove)
(list new-pmove)
(evolve-pmove new-pmove evolution-rules)))
(append-map (lambda (evolution-rule)
(evolution-rule pmove))
evolution-rules)))
(define (execute-rules initial-pmoves evolution-rules aggregate-rules)
((reduce compose identity aggregate-rules)
(append-map (lambda (pmove)
(evolve-pmove pmove evolution-rules))
initial-pmoves)))
;; Rules of checkers
(define *evolution-rules* '())
(define-syntax-rule (define-evolution-rule name game procedure)
(set! *evolution-rules*
(cons (list name 'game procedure)
*evolution-rules*)))
(define (evolution-rules-for-game game)
(filter-map (lambda (rule)
(and (eq? (second rule) game)
(third rule)))
*evolution-rules*))
(define *aggregate-rules* '())
(define-syntax-rule (define-aggregate-rule name game procedure)
(set! *aggregate-rules*
(cons (list name 'game procedure)
*aggregate-rules*)))
(define (aggregate-rules-for-game game)
(filter-map (lambda (rule)
(and (eq? (second rule) game)
(third rule)))
*aggregate-rules*))
(define (offset* offset scale)
(coords (* (coords-x offset) scale)
(* (coords-y offset) scale)))
(define (compute-new-position direction distance pmove)
(coords+ (piece-coords (current-piece pmove))
(offset* direction distance)))
(define (get-simple-moves pmove)
(filter-map
(lambda (direction)
(let ((landing (compute-new-position direction 1 pmove))
(board (current-board pmove)))
(and (is-position-on-board? landing board)
(is-position-unoccupied? landing board)
(finish-move (new-piece-position landing pmove)))))
(possible-directions (current-piece pmove))))
(define-evolution-rule 'simple-move checkers
(lambda (pmove)
(if (is-pmove-empty? pmove)
(get-simple-moves pmove)
'())))
(define (get-jumps pmove)
(filter-map
(lambda (direction)
(let ((possible-jump (compute-new-position direction 1 pmove))
(landing (compute-new-position direction 2 pmove))
(board (current-board pmove)))
(and (is-position-on-board? landing board)
(is-position-unoccupied? landing board)
(is-position-occupied-by-opponent? possible-jump board)
(capture-piece-at possible-jump
(new-piece-position landing pmove)))))
(possible-directions (current-piece pmove))))
(define-evolution-rule 'jump checkers
(lambda (pmove)
(let ((jumps (get-jumps pmove)))
(cond
((not (null? jumps))
jumps)
((is-pmove-empty? pmove)
'()) ; abandon this pmove
(else
(list (finish-move pmove)))))))
(define-aggregate-rule 'coronation checkers
(lambda (pmoves)
(map (lambda (pmove)
(let ((piece (current-piece pmove)))
(if (should-be-crowned? piece)
(update-piece crown-piece pmove)
pmove)))
pmoves)))
(define-aggregate-rule 'require-jumps checkers
(lambda (pmoves)
(let ((jumps (filter captures-pieces? pmoves)))
(if (null? jumps)
pmoves
jumps))))
(define (describe-pmove pmove)
(display "initial piece coords: (")
(display (coords-x (piece-coords (initial-piece pmove))))
(display ", ")
(display (coords-y (piece-coords (initial-piece pmove))))
(display ")")
(newline)
(display (length (pmove-changes pmove)))
(display " changes:")
(newline)
(let loop ((prev-piece (initial-piece pmove))
(changes (reverse (pmove-changes pmove))))
(unless (null? changes)
(let* ((change (car changes))
(piece (get-piece change)))
(case (first (get-flags change))
((update)
(cond
((not (equal? (piece-coords prev-piece)
(piece-coords piece)))
(display "move to (")
(display (coords-x (piece-coords piece)))
(display ", ")
(display (coords-y (piece-coords piece)))
(display ")"))
((not (eq? (piece-type prev-piece)
(piece-type piece)))
(display "type changed to ")
(display (piece-type piece)))))
((capture)
(display "capture"))
((finish)
(display "finish")))
(newline)
(loop piece (cdr changes))))))
;; Re-using the same scenario that I did with the previous
;; implementation.
(let* ((p (make-piece 'regular (coords 4 5) 'player))
(o0 (make-piece 'regular (coords 6 7) 'opponent))
(o1 (make-piece 'regular (coords 3 6) 'opponent))
(o2 (make-piece 'regular (coords 5 6) 'opponent))
(board (make-board (list p o0 o1 o2))))
(for-each describe-pmove
(execute-rules (list (initial-pmove board p))
(evolution-rules-for-game 'checkers)
(aggregate-rules-for-game 'checkers))))
;; Exercise 2.12: A bit of chess
;; a. Construct an analogous referee to generate the legal moves for a
;; rook. Don't try to implement the castling rule.
(define (piece-rook? piece)
(eq? (piece-type piece) 'rook))
(define (get-moves/rook pmove)
(if (piece-rook? (initial-piece pmove))
(append-map
(lambda (direction)
(let loop ((distance 1))
(let ((landing (compute-new-position direction distance pmove))
(board (current-board pmove)))
(if (is-position-on-board? landing board)
(cond
((is-position-unoccupied? landing board)
(cons (finish-move (new-piece-position landing pmove))
(loop (+ distance 1))))
((is-position-occupied-by-opponent? landing board)
(list (finish-move
(new-piece-position landing
(capture-piece-at landing pmove)))))
((is-position-occupied-by-self? landing board)
(loop (+ distance 1))))
'()))))
(list (coords 1 0)
(coords -1 0)
(coords 0 1)
(coords 0 -1)))
'()))
(define-evolution-rule 'move-rook chess
(lambda (pmove)
(if (is-pmove-empty? pmove)
(get-moves/rook pmove)
'())))
(let* ((prook (make-piece 'rook (coords 4 4) 'player))
(orook (make-piece 'rook (coords 6 4) 'opponent))
(board (make-board (list prook orook))))
(for-each describe-pmove
(execute-rules (list (initial-pmove board prook))
(evolution-rules-for-game 'chess)
(aggregate-rules-for-game 'chess))))
;; b. Augment your referee to model the behavior of a knight
(define (piece-knight? piece)
(eq? (piece-type piece) 'knight))
(define (get-moves/knight pmove)
(if (piece-knight? (initial-piece pmove))
(filter-map
(lambda (direction)
(let ((landing (compute-new-position direction 1 pmove))
(board (current-board pmove)))
(and (is-position-on-board? landing board)
(cond
((is-position-unoccupied? landing board)
(finish-move (new-piece-position landing pmove)))
((is-position-occupied-by-opponent? landing board)
(finish-move
(new-piece-position landing
(capture-piece-at landing pmove))))
((is-position-occupied-by-self? landing board)
#f)))))
(list (coords 1 2)
(coords 1 -2)
(coords -1 -2)
(coords -1 2)
(coords 2 1)
(coords 2 -1)
(coords -2 -1)
(coords -2 1)))
'()))
(define-evolution-rule 'move-knight chess
(lambda (pmove)
(if (is-pmove-empty? pmove)
(get-moves/knight pmove)
'())))
(let* ((pknight (make-piece 'knight (coords 4 4) 'player))
(oknight (make-piece 'knight (coords 6 5) 'opponent))
(board (make-board (list pknight oknight))))
(for-each describe-pmove
(execute-rules (list (initial-pmove board pknight))
(evolution-rules-for-game 'chess)
(aggregate-rules-for-game 'chess))))
;; Exercise 2:13: More chess
;; I get the idea. No one is grading me and I don't feel like making
;; a full chess implementation. ^_^
;; Exercise 2.14: An advanced project
;; I want to move on, sorry!
|