summaryrefslogtreecommitdiff
path: root/chapter-2/2.1-function-combinators.scm
blob: 2b820f224c4843941b78c67079afabb27de39980 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
;;; Copyright © 2021 Gerald Sussman and Chris Hanson
;;; Copyright © 2021 David Thompson <dthompson2@worcester.edu>
;;;
;;; This program is free software: you can redistribute it and/or
;;; modify it under the terms of the GNU General Public License as
;;; published by the Free Software Foundation, either version 3 of the
;;; License, or (at your option) any later version.
;;;
;;; This program is distributed in the hope that it will be useful,
;;; but WITHOUT ANY WARRANTY; without even the implied warranty of
;;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
;;; General Public License for more details.
;;;
;;; You should have received a copy of the GNU General Public License
;;; along with this program.  If not, see
;;; <http://www.gnu.org/licenses/>.

(use-modules (srfi srfi-11))


;; 2.1.1 Function combinators

(define (compose f g)
  (lambda args
    (f (apply g args))))

((compose (lambda (x) (list 'foo x))
          (lambda (x) (list 'bar x)))
 'z)

(define (identity x) x)

;; Could use (ice-9 curried-definitions) and use the exact code in the
;; book.
(define (iterate n)
  (lambda (f)
    (if (= n 0)
        identity
        (compose f ((iterate (- n 1)) f)))))

(define (square x) (* x x))

(((iterate 3) square) 5)

(define (parallel-combine h f g)
  (lambda args
    (h (apply f args) (apply g args))))

((parallel-combine list
                   (lambda (x y z) (list 'foo x y z))
                   (lambda (u v w) (list 'bar u v w)))
 'a 'b 'c)


;; Arity

(define (get-arity f)
  (let ((arity (procedure-minimum-arity f)))
    (if arity (car arity) 0)))

(define (restrict-arity f n)
  (set-procedure-minimum-arity! f n 0 #f)
  f)

(define-syntax-rule (assert cond)
  (unless cond
    (error "assertion failed" 'cond)))

(define (spread-combine h f g)
  (let* ((n (get-arity f))
         (m (get-arity g))
         (t (+ n m)))
    (define (the-combination . args)
      (assert (= (length args) t))
      (h (apply f (list-head args n))
         (apply g (list-tail args n))))
    (restrict-arity the-combination t)))

((spread-combine list
                 (lambda (x y) (list 'foo x y))
                 (lambda (u v w) (list 'bar u v w)))
 'a 'b 'c 'd 'e)


;; Exercise 2.1: Arity repair

(define (compose f g)
  (let ((n (get-arity f))
        (m (get-arity g)))
    (assert (= n 1))
    (define (the-composition . args)
      (assert (= (length args) m))
      (f (apply g args)))
    (restrict-arity the-composition m)))

(define (parallel-combine h f g)
  (let ((n (get-arity h))
        (m (get-arity f))
        (l (get-arity g)))
    (assert (= m l))
    (define (the-combination . args)
      (assert (= (length args) m))
      (h (apply f args) (apply g args)))
    (restrict-arity the-combination m)))


;; Exercise 2.2: Arity extension

;; Not sure how to accomplish this in Guile, honestly.  There is no
;; equivalent of procedure-arity-max that I can find.


;; Multiple values

(define (compose f g)
  (let ((n (get-arity g)))
    (define (the-composition . args)
      (assert (= (length args) n))
      (call-with-values (lambda () (apply g args))
        f))
    (restrict-arity the-composition n)))

(define (spread-apply f g)
  (let* ((n (get-arity f))
         (m (get-arity g))
         (t (+ n m)))
    (define (the-combination . args)
      (assert (= (length args) t))
      (let-values ((fv (apply f (list-head args n)))
                   (gv (apply g (list-tail args n))))
        (apply values (append fv gv))))
    (restrict-arity the-combination t)))

(define (spread-combine h f g)
  (compose h (spread-apply f g)))

((spread-combine list
                 (lambda (x y) (values x y))
                 (lambda (u v w) (values u v w)))
 'a 'b 'c 'd 'e)


;; Exercise 2.4: A quickie

(define (parallel-combine h f g)
  (let ((n (get-arity h))
        (m (get-arity f))
        (l (get-arity g)))
    (assert (= m l))
    (define (the-combination . args)
      (assert (= (length args) m))
      (let-values ((fv (apply f args))
                   (gv (apply g args)))
        (apply h (append fv gv))))
    (restrict-arity the-combination m)))

((parallel-combine list
                   (lambda (x y z) (values x y z))
                   (lambda (u v w) (values u v w)))
 'a 'b 'c)


;;; A small library

(define (list-remove l i)
  (if (= i 0)
      (cdr l)
      (cons (car l) (list-remove (cdr l) (- i 1)))))

(define (discard-argument i)
  (assert (and (exact-integer? i) (>= i 0)))
  (lambda (f)
    (let ((m (+ (get-arity f) 1)))
      (define (the-combination . args)
        (assert (= (length args) m))
        (apply f (list-remove args i)))
      (assert (< i m))
      (restrict-arity the-combination m))))

(((discard-argument 2)
  (lambda (x y z) (list 'foo x y z)))
 'a 'b 'c 'd)

(define (list-insert l i x)
  (if (= i 0)
      (cons x l)
      (cons (car l) (list-insert (cdr l) (- i 1) x))))

(define (curry-argument i)
  (lambda args
    (lambda (f)
      (assert (= (length args) (- (get-arity f) 1)))
      (lambda (x)
        (apply f (list-insert args i x))))))

((((curry-argument 2) 'a 'b 'c)
  (lambda (x y z w) (list 'foo x y z w)))
 'd)

(define (make-permutation permspec)
  (define (the-permuter lst)
    (map (lambda (p) (list-ref lst p))
         permspec))
  the-permuter)

(define (permute-arguments . permspec)
  (let ((permute (make-permutation permspec)))
    (lambda (f)
      (define (the-combination . args)
        (apply f (permute args)))
      (let ((n (get-arity f)))
        (assert (= n (length permspec)))
        (restrict-arity the-combination n)))))

(((permute-arguments 1 2 0 3)
  (lambda (x y z w) (list 'foo x y z w)))
 'a 'b 'c 'd)


;; Exercise 2.4: As compositions?

(define (discard-argument i)
  (assert (and (exact-integer? i) (>= i 0)))
  (lambda (f)
    (let ((n (+ (get-arity f) 1)))
      (define (the-combination . args)
        (assert (= (length args) n))
        (apply values (list-remove args i)))
      (assert (< i n))
      (compose f (restrict-arity the-combination n)))))

(((discard-argument 2)
  (lambda (x y z) (list 'foo x y z)))
 'a 'b 'c 'd)

(define (curry-argument i)
  (lambda args
    (lambda (f)
      (assert (= (length args) (- (get-arity f) 1)))
      (compose f (lambda (x)
                   (apply values (list-insert args i x)))))))

((((curry-argument 2) 'a 'b 'c)
  (lambda (x y z w) (list 'foo x y z w)))
 'd)

(define (permute-arguments . permspec)
  (let ((permute (make-permutation permspec)))
    (lambda (f)
      (define (the-combination . args)
        (apply values (permute args)))
      (let ((n (get-arity f)))
        (assert (= n (length permspec)))
        (compose f (restrict-arity the-combination n))))))

(((permute-arguments 1 2 0 3)
  (lambda (x y z w) (list 'foo x y z w)))
 'a 'b 'c 'd)


;; Exercise 2.5: Useful combinators

;; a - generalized {discard,curry}-argument

(define (make-discarder discard-spec)
  (define (the-discarder lst)
    (let loop ((spec discard-spec)
               (lst lst))
      (if (null? spec)
          lst
          (loop (cdr spec) (list-remove lst (car spec))))))
  the-discarder)

(define (discard-arguments . discard-spec)
  (let ((discarder (make-discarder discard-spec)))
    (lambda (f)
      (let ((n (+ (get-arity f) (length discard-spec))))
        (define (the-combination . args)
          (assert (= (length args) n))
          (apply values (discarder args)))
        (assert (< (length discard-spec) n))
        (compose f (restrict-arity the-combination n))))))

(((discard-arguments 0 2)
  (lambda (x y) (list 'foo x y)))
 'a 'b 'c 'd)

(define (make-currier curry-spec args)
  (define (the-currier lst)
    (let loop ((spec curry-spec)
               (lst lst)
               (args args))
      (if (null? spec)
          args
          (let ((i (car spec)))
            (loop (cdr spec) (cdr lst) (list-insert args i (car lst)))))))
  the-currier)

(define (curry-arguments . curry-spec)
  (lambda args
    (let ((currier (make-currier curry-spec args)))
      (lambda (f)
        (let ((n (length curry-spec)))
          (define (the-combination . args)
            (assert (= (length args) n))
            (apply values (currier args)))
          (assert (= (length args) (- (get-arity f) n)))
          (compose f (restrict-arity the-combination n)))))))

((((curry-arguments 1 2) 'a 'b 'c)
  (lambda (x y z w v) (list 'foo x y z w v)))
 'd 'e)


;; b - other useful combinators

(define (memoize f)
  (let ((cache (make-hash-table))
        (n (get-arity f)))
    (define (the-combination . args)
      (assert (= (length args) n))
      (let ((cached-values (hash-ref cache args)))
        (if cached-values
            (apply values cached-values)
            (let-values ((fv (apply f args)))
              (hash-set! cache args fv)
              (apply values fv)))))
    (restrict-arity the-combination n)))

(define memoize-test
  (memoize
   (lambda (x)
     (* x 3))))

(memoize-test 2) ; cache miss
(memoize-test 3) ; cache miss
(memoize-test 2) ; cache hit


;; c - compose with any number of args

(define (compose . procs)
  (cond
   ((null? procs)
    (error "must pass at least one procedure"))
   ((null? (cdr procs))
    (car procs))
   (else
    (let* ((f (car procs))
           (g (apply compose (cdr procs)))
           (n (get-arity g)))
      (define (the-composition . args)
        (assert (= (length args) n))
        (call-with-values (lambda () (apply g args))
          f))
      (restrict-arity the-composition n)))))

((compose (lambda (x) (list 'foo x))
          (lambda (x y z) (list 'bar x y z))
          (lambda (x y) (values 'baz x y)))
 'z 'w)