1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
|
title: Optimizing Guile Scheme
date: 2024-02-26 08:30:00
tags: guile, scheme
summary: An overview of how I optimize Guile code with examples
---
[Guile](https://gnu.org/software/guile) is a rather niche language
that I love dearly. Guile is a Scheme dialect that features an
advanced optimizing bytecode compiler, a JIT compiler, and a modest
set of developer tools for inspecting and debugging. Through my time
spent developing [Chickadee](/projects/chickadee.html), a game
programming library, I have gotten quite familiar with how to get the
most out of Guile in terms of performance. Every now and then I share
a tip or two with someone on IRC or the fediverse and think “I should
blog about this” so now I’m finally doing that. These tips are quite
simple and apply to optimizing any dynamic language. The only
difference is that there isn’t much in the way of helpful examples
specifically for Guile… until now.
Scheme is a dynamic language which means that there is a limited
amount of compile-time information that can be used by Guile to
optimize the resulting bytecode. When we put on our optimizer hat,
our job is to give the compiler a hand so the optimization passes can
do their thing. I should stress that the level of code scrutiny we’re
about to get into is usually unnecessary and the result doesn’t always
look like the beautiful, functional Scheme you may be used to.
However, most programs have some core loop or kernel, a small piece of
the larger program, that would be benefit from being optimized to its
fullest. In Chickadee, the most performance sensitive code is in the
graphics layer, where lots of floating point math happens.
### Rule 1: Don’t allocate
If you can avoid allocation, you will probably have at least decent
throughput without doing much else. Some allocations are explicit;
`(vector 1 2 3)` clearly allocates a vector. Other allocations are
implicit; `(+ x 1)` may or may not allocate depending on the value of
`x`.
If `x` is `42` then there is no allocation because the result, `43`,
is in the fixnum range (`[-2^63, 2^63)` on 64-bit machines.) Guile
stores fixnums as “immediate” values; values which are not heap
allocated. However, if `x` is `42.0` then Guile will allocate a float
on the heap to store the result `43.0`. Did you know that floats were
heap allocated in Guile? I didn’t when I was getting started! All
numbers besides fixnums are heap allocated.
Now that you know the hard truth about Guile’s floats, you might think
that math is doomed to be slow on Guile; that any realtime graphics
program will be a stuttery mess. Keep reading and I will explain why
this isn’t the case!
### Rule 2: Prefer monomorphic over polymorphic
The base Scheme environment mostly provides monomorphic procedures;
`append` is for lists, `string-append` is for strings, etc. The big
exception to this rule is the numeric tower. While beautiful, it can
be a hinderance to performant code. All of the arithmetic operators
are polymorphic; `+` adds any two numbers together and there are many
types of numbers.
Compiled as-is, it means that multiple dispatch on the operands needs
to happen at runtime to determine which specialized “add $type-a and
$type-b” routine needs to be called.
The R6RS specification introduced monomorphic procedures for fixnums
and floats such as `fx+` and `fl+`. These procedures remove the
overhead of generic dispatching, but they don't help with the
allocation problem; Without a sufficiently advanced compiler, `(fl*
(fl+ x y) z)` will allocate a new float to hold the intermediate
result of `fl+` that gets thrown away after the `fl*` call. But I
wouldn’t be writing this if Guile *didn’t* have a sufficiently
advanced compiler!
### Why not both?
We can write numeric code that is both specialized and allocates
minimally. Guile’s compiler performs a *type inference* pass on our
code and will specialize numeric operations wherever possible. For
example, if Guile can prove that all the variables involved in `(* (+
x y) z)` are floats, it will optimize the resulting bytecode so that:
* The floats within `x`, `y`, and `z` are used directly.
* `+` and `*` are compiled to specialized `fadd` and `fmul` primitives.
* The intermediate result of `(+ x y)` does not allocate a new heap
object.
This is called *unboxing*. Imagine every Scheme value as an object
stored inside a little box. Unboxing means removing some objects from
their respective boxes, performing some sequence of operations on them
*without* storing each intermediate result in a throwaway box, and
then putting the final result into a new box. Unboxing is how we we
can satisfy both of our optimization rules for numeric code.
Unboxed floating point math is what allows Chickadee to do things like
render thousands of sprites at 60 frames per second without constant
GC-related stutter.
### The tools
To optimize effectively, we need tools to help us identify problematic
code and tools to validate that our changes are improving things. The
most essential tools I use are accessible via REPL commands:
* `,profile`: Evaluate an expression in the context of `statprof` and
print the results.
* `,disassemble`: Print the bytecode disassembly of a procedure.
An additional tool that does not have it’s own REPL command is
`gcprof`, which is a profiler that can help identify code that most
frequently triggers garbage collection. I won’t be using it here but
you should know it exists.
Now, let’s get into some examples and walk through optimizing each
one.
### Example 1: Variadic arguments
It’s common in Scheme for procedures to handle an arbitrary number of
arguments. For example, the `map` procedure can process as many lists
as you throw at it; `(map + '(1 2 3) '(4 5 6) '(7 8 9))` produces the
result `(12 15 18)`.
Supporting an arbitrary number of arguments makes for flexible
interfaces, but a naive implementation will cause excessive GC churn
in the common case where only a few arguments are passed.
Let’s analyze a contrived example. The following procedure computes
the average of all arguments:
```scheme
(use-modules (srfi srfi-1))
(define (average . args)
(/ (fold + 0 args) (length args)))
```
Let's profile it and see how well it performs:
```scheme
scheme@(guile-user)> ,profile (let lp ((i 0))
(when (< i 100000000)
(average 1 2 3)
(lp (+ i 1))))
% cumulative self
time seconds seconds procedure
31.99 13.68 4.43 <current input>:1918:16:average
23.43 7.94 3.25 srfi/srfi-1.scm:452:2:fold
22.73 3.15 3.15 +
8.22 1.14 1.14 length
5.94 0.82 0.82 list?
5.24 0.73 0.73 procedure?
1.22 13.85 0.17 <current input>:1979:9
1.22 0.17 0.17 %after-gc-thunk
0.00 0.17 0.00 anon #x19675c0
---
Sample count: 572
Total time: 13.853321979 seconds (6.297763116 seconds in GC)
```
Nearly half of our time was spent in GC. Let's find out why by taking
a look at the disassembly:
```
scheme@(guile-user)> ,disassemble average
Disassembly of #<procedure average args> at #x1a9cbd0:
0 (instrument-entry 240) at (unknown file):1918:16
2 (assert-nargs-ge 1)
3 (bind-rest 1) ;; 2 slots
4 (alloc-frame 9) ;; 9 slots
5 (static-ref 8 189) ;; #<variable 7fa802ccba40 value: #<procedure fold (kons knil list1) | (kons kni…> at (unknown file):1919:6
7 (immediate-tag=? 8 7 0) ;; heap-object?
9 (je 9) ;; -> L1
10 (static-ref 8 162) ;; #<directory (guile-user) 7fa802cf8c80>
12 (static-ref 6 192) ;; fold
14 (call-scm<-scm-scm 8 8 6 111) ;; lookup-bound
16 (static-set! 8 178) ;; #<variable 7fa802ccba40 value: #<procedure fold (kons knil list1) | (kons kni…>
L1:
18 (scm-ref/immediate 8 8 1)
19 (static-ref 6 187) ;; #<variable 7fa802c36a40 value: #<procedure + (#:optional _ _ . _)>> at (unknown file):1919:11
21 (immediate-tag=? 6 7 0) ;; heap-object?
23 (je 7) ;; -> L2
24 (call-scm<-scmn-scmn 6 194 198 113);; lookup-bound-private
28 (static-set! 6 178) ;; #<variable 7fa802c36a40 value: #<procedure + (#:optional _ _ . _)>>
L2:
30 (scm-ref/immediate 2 6 1)
31 (make-immediate 1 2) ;; 0 at (unknown file):1919:13
32 (mov 3 8) at (unknown file):1919:5
33 (mov 0 7)
34 (handle-interrupts)
35 (call 5 4)
37 (receive 0 5 9)
39 (static-ref 6 191) ;; #<variable 7fa802c2d990 value: #<procedure length (_)>> at (unknown file):1919:21
41 (immediate-tag=? 6 7 0) ;; heap-object?
43 (je 7) ;; -> L3
44 (call-scm<-scmn-scmn 6 174 188 113);; lookup-bound-private
48 (static-set! 6 182) ;; #<variable 7fa802c2d990 value: #<procedure length (_)>>
L3:
50 (scm-ref/immediate 4 6 1)
51 (mov 3 7)
52 (handle-interrupts)
53 (call 4 2)
55 (receive 1 4 9)
57 (call-scm<-scm-scm 8 8 7 5) ;; div at (unknown file):1919:2
59 (reset-frame 1) ;; 1 slot
60 (handle-interrupts)
61 (return-values)
```
Note instruction 3, `bind-rest`. The Guile manual says:
> Instruction: bind-rest f24:DST
>
> Collect any arguments at or above DST into a list, and store that
> list at DST.
So, for each call, a sequence of pairs is allocated to hold all of the
arguments. That's probably where a lot of our allocation is coming
from. To optimize this, let’s first assume that `average` is
typically called with 3 arguments or less. It would be great if we
could make these common cases fast while still allowing the
flexibility of passing an arbitrary number of arguments. To do this,
we’ll use `case-lambda`:
```scheme
(define average
(case-lambda
(() 0)
((x) x)
((x y) (/ (+ x y) 2))
((x y z) (/ (+ x y z) 3))
;; ... and so on, add as many cases as you'd like!
(args
(/ (fold + 0 args) (length args)))))
```
Let’s re-run the profiler to see if this is actually better:
```
% cumulative self
time seconds seconds procedure
76.47 0.63 0.63 <current input>:2055:2:average
23.53 0.82 0.19 <current input>:2073:9
---
Sample count: 51
Total time: 0.82462725 seconds (0.0 seconds in GC)
```
I'd say that nearly 17x faster with no GC is an improvement!
Let’s see what's changed in the disassembly:
```
scheme@(guile-user)> ,disassemble average
Disassembly of #<procedure average () | (x) | (x y) | (x y z) | args> at #x1ab4c70:
0 (instrument-entry 278) at (unknown file):2055:2
2 (arguments<=? 1)
3 (jne 6) ;; -> L1
4 (alloc-frame 9) ;; 9 slots
5 (make-immediate 8 2) ;; 0 at (unknown file):2056:8
6 (reset-frame 1) ;; 1 slot
7 (handle-interrupts)
8 (return-values)
L1:
9 (arguments<=? 2)
10 (jne 6) ;; -> L2
11 (alloc-frame 9) ;; 9 slots
12 (mov 8 7)
13 (reset-frame 1) ;; 1 slot
14 (handle-interrupts)
15 (return-values)
L2:
16 (arguments<=? 3)
17 (jne 10) ;; -> L3
18 (alloc-frame 9) ;; 9 slots
19 (call-scm<-scm-scm 8 7 6 0) ;; add at (unknown file):2058:14
21 (make-immediate 7 10) ;; 2 at (unknown file):2058:22
22 (call-scm<-scm-scm 8 8 7 5) ;; div at (unknown file):2058:11
24 (reset-frame 1) ;; 1 slot
25 (handle-interrupts)
26 (return-values)
L3:
27 (arguments<=? 4)
28 (jne 12) ;; -> L4
29 (alloc-frame 9) ;; 9 slots
30 (call-scm<-scm-scm 8 7 6 0) ;; add at (unknown file):2059:16
32 (call-scm<-scm-scm 8 8 5 0) ;; add
34 (make-immediate 7 14) ;; 3 at (unknown file):2059:26
35 (call-scm<-scm-scm 8 8 7 5) ;; div at (unknown file):2059:13
37 (reset-frame 1) ;; 1 slot
38 (handle-interrupts)
39 (return-values)
L4:
40 (assert-nargs-ge 1)
41 (bind-rest 1) ;; 2 slots
42 (alloc-frame 9) ;; 9 slots
43 (static-ref 8 189) ;; #f at (unknown file):2061:9
45 (immediate-tag=? 8 7 0) ;; heap-object?
47 (je 9) ;; -> L5
48 (static-ref 8 162) ;; #<directory (guile-user) 7fa802cf8c80>
50 (static-ref 6 192) ;; fold
52 (call-scm<-scm-scm 8 8 6 111) ;; lookup-bound
54 (static-set! 8 178) ;; #f
L5:
56 (scm-ref/immediate 8 8 1)
57 (static-ref 6 187) ;; #f at (unknown file):2061:14
59 (immediate-tag=? 6 7 0) ;; heap-object?
61 (je 7) ;; -> L6
62 (call-scm<-scmn-scmn 6 194 198 113);; lookup-bound-private
66 (static-set! 6 178) ;; #f
L6:
68 (scm-ref/immediate 2 6 1)
69 (make-immediate 1 2) ;; 0 at (unknown file):2061:16
70 (mov 3 8) at (unknown file):2061:8
71 (mov 0 7)
72 (handle-interrupts)
73 (call 5 4)
75 (receive 0 5 9)
77 (static-ref 6 191) ;; #f at (unknown file):2061:24
79 (immediate-tag=? 6 7 0) ;; heap-object?
81 (je 7) ;; -> L7
82 (call-scm<-scmn-scmn 6 174 188 113);; lookup-bound-private
86 (static-set! 6 182) ;; #f
L7:
88 (scm-ref/immediate 4 6 1)
89 (mov 3 7)
90 (handle-interrupts)
91 (call 4 2)
93 (receive 1 4 9)
95 (call-scm<-scm-scm 8 8 7 5) ;; div at (unknown file):2061:5
97 (reset-frame 1) ;; 1 slot
98 (handle-interrupts)
99 (return-values)
```
There are more instructions now, but the branches for the known arity
cases do not contain a `bind-rest` instruction. Only branch `L4`, the
one that handles the final clause of the `case-lambda`, uses
`bind-rest`.
### Example 2: Floating point math
> “Nothing brings fear to my heart more than a floating point number.”
>
> — [Gerald Sussman](https://youtu.be/HB5TrK7A4pI?t=672)
Programs that need to crunch numbers in realtime, such as games, rely
on floating point numbers. Dedicated hardware in the form of FPUs and
GPUs make them essential for gettin’ math done quick and so we put up
with their black magic.
Consider the following code that calculates the magnitude of a 2D
vector:
```scheme
(define (magnitude x y)
(sqrt (+ (* x x) (* y y))))
```
Would you believe me if I told you the bytecode is less than perfect?
```scheme
scheme@(guile-user)> ,disassemble magnitude
Disassembly of #<procedure magnitude (x y)> at #x1a3fad8:
0 (instrument-entry 84) at (unknown file):2106:16
2 (assert-nargs-ee/locals 3 0) ;; 3 slots (2 args)
3 (call-scm<-scm-scm 2 1 1 4) ;; mul at (unknown file):2107:11
5 (call-scm<-scm-scm 1 0 0 4) ;; mul at (unknown file):2107:19
7 (call-scm<-scm-scm 2 2 1 0) ;; add at (unknown file):2107:8
9 (call-scm<-scm 2 2 68) ;; sqrt at (unknown file):2107:2
11 (reset-frame 1) ;; 1 slot
12 (handle-interrupts)
13 (return-values)
```
Note the `call-scm<-scm-scm` instructions calling generic math
primitives `mul` and `add`.
```scheme
scheme@(guile-user)> ,profile (let lp ((i 0))
(when (< i 100000000)
(magnitude 3.0 4.0)
(lp (+ i 1))))
% cumulative self
time seconds seconds procedure
85.12 26.94 24.50 <current input>:13:16:magnitude
8.48 2.44 2.44 %after-gc-thunk
6.40 28.79 1.84 <current input>:21:9
0.00 2.44 0.00 anon #x1e9e5c0
---
Sample count: 672
Total time: 28.786191396 seconds (26.349479685 seconds in GC)
```
Oof, nearly all of our time is spent in GC!
To fix this, we need to constrain our inputs by using predicates to
guard the path to the numeric code. This will inform Guile that
certain types of numbers will never reach this branch and allow the
compiler to choose more specialized primitives. If we’re okay with
only working with floats (we are) then we should constrain our
procedure accordingly:
```scheme
(define (magnitude x y)
(unless (and (real? x) (inexact? x)
(real? y) (inexact? y))
(error "expected floats" x y))
(sqrt (+ (* x x) (* y y))))
```
And the stats:
```scheme
% cumulative self
time seconds seconds procedure
82.73 4.13 4.06 <current input>:177:16:magnitude
15.83 4.91 0.78 <current input>:187:9
1.44 0.07 0.07 %after-gc-thunk
0.00 0.07 0.00 anon #x1e9e5c0
---
Sample count: 139
Total time: 4.909505945 seconds (3.970948419 seconds in GC)
```
Our code now runs about 6x faster, but GC is still taking up most of
that time. Let's examine the disassembly:
```
Disassembly of #<procedure magnitude (x y)> at #x1f41378:
0 (instrument-entry 206) at (unknown file):177:16
2 (assert-nargs-ee/locals 3 4) ;; 7 slots (2 args)
3 (immediate-tag=? 5 3 2) ;; fixnum? at (unknown file):178:15
5 (je 10) ;; -> L1
6 (immediate-tag=? 5 7 0) ;; heap-object?
8 (jne 54) ;; -> L3
9 (heap-tag=? 5 127 23) ;; heap-number?
11 (jne 51) ;; -> L3
12 (heap-tag=? 5 4095 791) ;; compnum?
14 (je 48) ;; -> L3
L1:
15 (immediate-tag=? 5 3 2) ;; fixnum? at (unknown file):178:25
17 (je 45) ;; -> L3
18 (heap-tag=? 5 4095 535) ;; flonum?
20 (jne 42) ;; -> L3
21 (immediate-tag=? 4 3 2) ;; fixnum? at (unknown file):179:15
23 (je 10) ;; -> L2
24 (immediate-tag=? 4 7 0) ;; heap-object?
26 (jne 36) ;; -> L3
27 (heap-tag=? 4 127 23) ;; heap-number?
29 (jne 33) ;; -> L3
30 (heap-tag=? 4 4095 791) ;; compnum?
32 (je 30) ;; -> L3
L2:
33 (immediate-tag=? 4 3 2) ;; fixnum? at (unknown file):179:25
35 (je 27) ;; -> L3
36 (heap-tag=? 4 4095 535) ;; flonum?
38 (jne 24) ;; -> L3
39 (call-f64<-scm 6 5 17) ;; scm->f64 at (unknown file):181:11
41 (fmul 6 6 6)
42 (call-f64<-scm 5 4 17) ;; scm->f64 at (unknown file):181:19
44 (fmul 5 5 5)
45 (fadd 6 6 5) at (unknown file):181:8
46 (call-f64<-f64 6 6 70) at (unknown file):181:2
48 (allocate-pointerless-words/immediate 5 2)
49 (load-u64 4 0 535)
52 (word-set!/immediate 5 0 4)
53 (tail-pointer-ref/immediate 4 5 1)
54 (load-u64 3 0 0)
57 (f64-set! 4 3 6)
58 (mov 6 5)
59 (reset-frame 1) ;; 1 slot
60 (handle-interrupts)
61 (return-values)
L3:
62 (static-ref 6 134) ;; misc-error at (unknown file):180:4
64 (make-immediate 3 4) ;; #f
65 (make-non-immediate 2 133) ;; "expected floats ~S ~S" at (unknown file):180:11
67 (make-immediate 1 772) ;; () at (unknown file):180:4
68 (allocate-words/immediate 0 2)
69 (scm-set!/immediate 0 0 4)
70 (scm-set!/immediate 0 1 1)
71 (allocate-words/immediate 4 2)
72 (scm-set!/immediate 4 0 5)
73 (scm-set!/immediate 4 1 0)
74 (allocate-words/immediate 5 2)
75 (scm-set!/immediate 5 0 3)
76 (scm-set!/immediate 5 1 1)
77 (allocate-words/immediate 1 2)
78 (scm-set!/immediate 1 0 4)
79 (scm-set!/immediate 1 1 5)
80 (allocate-words/immediate 5 2)
81 (scm-set!/immediate 5 0 2)
82 (scm-set!/immediate 5 1 1)
83 (allocate-words/immediate 4 2)
84 (scm-set!/immediate 4 0 3)
85 (scm-set!/immediate 4 1 5)
86 (throw 6 4)
```
Important note: It seems that Guile 3.0.9, the latest stable release
as of writing, does not perform the desired optimization here. All
the output you are seeing here is from a Guile built from commit
`fb1f5e28b1a575247fd16184b1c83b8838b09716` of the main branch. If you
are reading this months/years into the future, then as long as you
have Guile > 3.0.9 you should be all set.
There's a lot more instructions, but starting with instruction 41 we
can see that unboxed float instrutions like `fadd` and `fmul` are
being used. It's not made very clear, but instruction 46,
`call-f64<-f64`, is a call to a `sqrt` primitive specialized for
floats. Since our inputs have to be floats, Guile unboxes them as
f64s via the `call-f64<-scm` instruction. The cost of the runtime
checks is cheap compared to the cost of all the GC churn in the first
version.
The source of our time spent in GC is the
`allocate-pointerless-words/immediate` instruction at index 48. This
allocates a new heap object and the subsequent instructions like
`f64-set!` set the contents of the heap object to the result of the
`sqrt` call. Our optimizations are local and once we cross the
procedure call boundary we need boxed values again.
### Example 3: Please inline
Guile will automatically inline procedures it considers small enough
for the potential performance improvements to be worth the additional
code size. It’s a nice feature, but there are times when you wish
something would be inlined but it doesn’t happen.
Let’s define a procedure that normalizes 2D vectors. To do so, we’ll
build atop the `magnitude` procedure from example 2.
```scheme
(define (normalize x y)
(let ((mag (magnitude x y)))
(when (= mag 0.0)
(error "cannot normalize vector with 0 magnitude" x y))
(values (/ x mag) (/ y mag))))
```
It would be *great* if all the unboxed float goodness from `magnitude`
spilled over to `normalize`. Let’s see if that happened (it didn’t):
```
scheme@(guile-user)> ,disassemble normalize
Disassembly of #<procedure normalize (x y)> at #x16609b0:
0 (instrument-entry 254) at (unknown file):17:19
2 (assert-nargs-ee/locals 3 6) ;; 9 slots (2 args)
3 (static-ref 8 211) ;; #<variable 7f05e03e8490 value: #<procedure magnitude (x y)>> at (unknown file):18:14
5 (immediate-tag=? 8 7 0) ;; heap-object?
7 (je 9) ;; -> L1
8 (static-ref 8 184) ;; #<directory (guile-user) 7f05ec481c80>
10 (static-ref 5 214) ;; magnitude
12 (call-scm<-scm-scm 8 8 5 111) ;; lookup-bound
14 (static-set! 8 200) ;; #<variable 7f05e03e8490 value: #<procedure magnitude (x y)>>
L1:
16 (scm-ref/immediate 2 8 1)
17 (mov 1 7) at (unknown file):18:13
18 (mov 0 6)
19 (handle-interrupts)
20 (call 6 3)
22 (receive 0 6 9)
24 (static-ref 5 210) ;; 0.0 at (unknown file):19:17
26 (=? 8 5) at (unknown file):19:10
27 (je 11) ;; -> L2
28 (call-scm<-scm-scm 7 7 8 5) ;; div at (unknown file):21:12
30 (call-scm<-scm-scm 8 6 8 5) ;; div at (unknown file):21:22
32 (mov 6 7) at (unknown file):21:4
33 (mov 7 8)
34 (mov 8 6)
35 (reset-frame 2) ;; 2 slots
36 (handle-interrupts)
37 (return-values)
L2:
38 (static-ref 8 206) ;; misc-error at (unknown file):20:6
40 (make-immediate 5 4) ;; #f
41 (make-non-immediate 4 205) ;; "cannot normalize vector with 0 magnitude ~S ~S" at (unknown file):20:13
43 (make-immediate 3 772) ;; () at (unknown file):20:6
44 (allocate-words/immediate 2 2)
45 (scm-set!/immediate 2 0 6)
46 (scm-set!/immediate 2 1 3)
47 (allocate-words/immediate 6 2)
48 (scm-set!/immediate 6 0 7)
49 (scm-set!/immediate 6 1 2)
50 (allocate-words/immediate 7 2)
51 (scm-set!/immediate 7 0 5)
52 (scm-set!/immediate 7 1 3)
53 (allocate-words/immediate 3 2)
54 (scm-set!/immediate 3 0 6)
55 (scm-set!/immediate 3 1 7)
56 (allocate-words/immediate 7 2)
57 (scm-set!/immediate 7 0 4)
58 (scm-set!/immediate 7 1 3)
59 (allocate-words/immediate 6 2)
60 (scm-set!/immediate 6 0 5)
61 (scm-set!/immediate 6 1 7)
62 (throw 8 6)
```
Instruction 20 is `call`, so inlining didn’t happen. Furthermore, the
two `/` calls (instructions 28 and 30) use the generic division
primitive rather than `fdiv`. No unboxing for us.
The profiler confirms that things aren’t so great:
```scheme
scheme@(guile-user)> ,profile (let lp ((i 0))
(when (< i 100000000)
(normalize 3.0 4.0)
(lp (+ i 1))))
% cumulative self
time seconds seconds procedure
52.80 21.16 11.51 <current input>:17:19:normalize
41.01 9.36 8.94 <current input>:9:19:magnitude
3.29 0.72 0.72 %after-gc-thunk
2.90 21.80 0.63 <current input>:23:9
0.00 0.72 0.00 anon #x15fd5c0
---
Sample count: 517
Total time: 21.795201408 seconds (19.704395422 seconds in GC)
```
To force the compiler to inline `magnitude`, we’ll change the
definition of to use `define-inlinable`:
```scheme
(define-inlinable (magnitude x y)
(unless (and (real? x) (inexact? x)
(real? y) (inexact? y))
(error "expected floats" x y))
(sqrt (+ (* x x) (* y y))))
```
`define-inlinable` is a handy little macro that will substitute the
procedure body into its call sites.
Now let’s see the disassembly:
```
Disassembly of #<procedure normalize (x y)> at #x16993c8:
0 (instrument-entry 276) at (unknown file):58:19
2 (assert-nargs-ee/locals 3 4) ;; 7 slots (2 args)
3 (immediate-tag=? 5 3 2) ;; fixnum? at (unknown file):59:13
5 (je 10) ;; -> L1
6 (immediate-tag=? 5 7 0) ;; heap-object?
8 (jne 97) ;; -> L4
9 (heap-tag=? 5 127 23) ;; heap-number?
11 (jne 94) ;; -> L4
12 (heap-tag=? 5 4095 791) ;; compnum?
14 (je 91) ;; -> L4
L1:
15 (immediate-tag=? 5 3 2) ;; fixnum?
17 (je 88) ;; -> L4
18 (heap-tag=? 5 4095 535) ;; flonum?
20 (jne 85) ;; -> L4
21 (immediate-tag=? 4 3 2) ;; fixnum?
23 (je 10) ;; -> L2
24 (immediate-tag=? 4 7 0) ;; heap-object?
26 (jne 79) ;; -> L4
27 (heap-tag=? 4 127 23) ;; heap-number?
29 (jne 76) ;; -> L4
30 (heap-tag=? 4 4095 791) ;; compnum?
32 (je 73) ;; -> L4
L2:
33 (immediate-tag=? 4 3 2) ;; fixnum?
35 (je 70) ;; -> L4
36 (heap-tag=? 4 4095 535) ;; flonum?
38 (jne 67) ;; -> L4
39 (call-f64<-scm 6 5 17) ;; scm->f64
41 (fmul 3 6 6)
42 (call-f64<-scm 2 4 17) ;; scm->f64
44 (fmul 1 2 2)
45 (fadd 3 3 1)
46 (call-f64<-f64 3 3 70)
48 (load-f64 1 0 0) at (unknown file):60:10
51 (f64=? 3 1)
52 (je 28) ;; -> L3
53 (fdiv 6 6 3) at (unknown file):62:12
54 (allocate-pointerless-words/immediate 5 2)
55 (load-u64 4 0 535)
58 (word-set!/immediate 5 0 4)
59 (tail-pointer-ref/immediate 4 5 1)
60 (load-u64 1 0 0)
63 (f64-set! 4 1 6)
64 (fdiv 6 2 3) at (unknown file):62:22
65 (allocate-pointerless-words/immediate 4 2)
66 (load-u64 3 0 535)
69 (word-set!/immediate 4 0 3)
70 (tail-pointer-ref/immediate 3 4 1)
71 (load-u64 2 0 0)
74 (f64-set! 3 2 6)
75 (mov 6 5) at (unknown file):62:4
76 (mov 5 4)
77 (reset-frame 2) ;; 2 slots
78 (handle-interrupts)
79 (return-values)
L3:
80 (static-ref 6 178) ;; misc-error at (unknown file):61:6
82 (make-immediate 3 4) ;; #f
83 (make-non-immediate 2 177) ;; "cannot normalize vector with 0 magnitude ~S ~S" at (unknown file):61:13
85 (make-immediate 1 772) ;; () at (unknown file):61:6
86 (allocate-words/immediate 0 2)
87 (scm-set!/immediate 0 0 4)
88 (scm-set!/immediate 0 1 1)
89 (allocate-words/immediate 4 2)
90 (scm-set!/immediate 4 0 5)
91 (scm-set!/immediate 4 1 0)
92 (allocate-words/immediate 5 2)
93 (scm-set!/immediate 5 0 3)
94 (scm-set!/immediate 5 1 1)
95 (allocate-words/immediate 1 2)
96 (scm-set!/immediate 1 0 4)
97 (scm-set!/immediate 1 1 5)
98 (allocate-words/immediate 5 2)
99 (scm-set!/immediate 5 0 2)
100 (scm-set!/immediate 5 1 1)
101 (allocate-words/immediate 4 2)
102 (scm-set!/immediate 4 0 3)
103 (scm-set!/immediate 4 1 5)
104 (throw 6 4)
L4:
105 (static-ref 6 153) ;; misc-error at (unknown file):59:13
107 (make-immediate 3 4) ;; #f
108 (make-non-immediate 2 160) ;; "expected floats ~S ~S" at (unknown file):54:11
110 (make-immediate 1 772) ;; () at (unknown file):59:13
111 (allocate-words/immediate 0 2)
112 (scm-set!/immediate 0 0 4)
113 (scm-set!/immediate 0 1 1)
114 (allocate-words/immediate 4 2)
115 (scm-set!/immediate 4 0 5)
116 (scm-set!/immediate 4 1 0)
117 (allocate-words/immediate 5 2)
118 (scm-set!/immediate 5 0 3)
119 (scm-set!/immediate 5 1 1)
120 (allocate-words/immediate 1 2)
121 (scm-set!/immediate 1 0 4)
122 (scm-set!/immediate 1 1 5)
123 (allocate-words/immediate 5 2)
124 (scm-set!/immediate 5 0 2)
125 (scm-set!/immediate 5 1 1)
126 (allocate-words/immediate 4 2)
127 (scm-set!/immediate 4 0 3)
128 (scm-set!/immediate 4 1 5)
129 (throw 6 4)
```
Much better! All of the instructions for `magnitude` are now part of
`normalize`. `/` is compiled to `fdiv` just like we had hoped.
```scheme
% cumulative self
time seconds seconds procedure
93.04 9.24 9.19 <current input>:58:19:normalize
6.52 9.88 0.64 <current input>:71:9
0.43 0.04 0.04 %after-gc-thunk
0.00 0.04 0.00 anon #x15fd5c0
---
Sample count: 230
Total time: 9.879456057 seconds (8.858042989 seconds in GC)
```
We’re 2x faster now, though still a lot of GC. For our final example,
we will fully embrace *mutable state*. As much us Schemers like
functional programming, mutable state is sometimes necessary.
### Example 4: Bytevectors
For *really* performance sensitive math code, we can go one step
further to avoid allocation and use bytevectors to store the results
of numeric operations. Chickadee uses bytevectors extensively to
minimize the number of heap allocated floats. Bytevectors have the
advantage of unboxed getters and setters, so they’re my preferred data
structure for math intensive code.
Let's revisit the vector math of the previous two examples, but this
time using bytevectors to represent 2D vectors.
```scheme
(define-inlinable (vec2 x y)
(let ((bv (make-f32vector 2)))
(f32vector-set! bv 0 x)
(f32vector-set! bv 1 y)
bv))
(define-inlinable (vec2-x v)
(f32vector-ref v 0))
(define-inlinable (vec2-y v)
(f32vector-ref v 1))
(define-inlinable (magnitude v)
(let ((x (vec2-x v))
(y (vec2-y v)))
(sqrt (+ (* x x) (* y y)))))
(define (normalize v)
(let ((mag (magnitude v)))
(when (= mag 0.0)
(error "cannot normalize vector with 0 magnitude" v))
(vec2 (/ (vec2-x v) mag) (/ (vec2-y v) mag))))
```
Here’s the disassembly for `normalize` now:
```
Disassembly of #<procedure normalize (v)> at #x1b05d50:
0 (instrument-entry 492) at (unknown file):454:19
2 (assert-nargs-ee/locals 2 11) ;; 13 slots (1 arg)
3 (make-immediate 12 2) ;; 0 at (unknown file):455:13
4 (immediate-tag=? 11 7 0) ;; heap-object?
6 (jne 83) ;; -> L8
7 (heap-tag=? 11 127 77) ;; bytevector?
9 (jne 80) ;; -> L8
10 (word-ref/immediate 10 11 1)
11 (load-s64 9 0 0)
14 (imm-u64<? 10 3)
15 (jnl 72) ;; -> L7
16 (usub/immediate 10 10 3)
17 (pointer-ref/immediate 8 11 2)
18 (f32-ref 7 8 9)
19 (make-immediate 6 18) ;; 4
20 (load-s64 5 0 4)
23 (u64<? 5 10)
24 (jnl 61) ;; -> L6
25 (f32-ref 10 8 5)
26 (fmul 8 7 7)
27 (fmul 4 10 10)
28 (fadd 8 8 4)
29 (call-f64<-f64 8 8 70)
31 (load-f64 4 0 0) at (unknown file):456:10
34 (f64=? 8 4)
35 (je 48) ;; -> L5
36 (fdiv 11 7 8) at (unknown file):458:10
37 (fdiv 10 10 8) at (unknown file):458:29
38 (static-ref 8 332) ;; #f at (unknown file):388:13
40 (immediate-tag=? 8 7 0) ;; heap-object?
42 (je 9) ;; -> L1
43 (static-ref 8 305) ;; #<directory (guile-user) 7f05ec481c80>
45 (static-ref 7 335) ;; make-f32vector
47 (call-scm<-scm-scm 8 8 7 111) ;; lookup-bound
49 (static-set! 8 321) ;; #f
L1:
51 (scm-ref/immediate 1 8 1)
52 (make-immediate 0 10) ;; 2 at (unknown file):388:28
53 (handle-interrupts) at (unknown file):458:4
54 (call 11 2)
56 (receive 4 11 13)
58 (immediate-tag=? 8 7 0) ;; heap-object?
60 (jne 21) ;; -> L4
61 (heap-tag=? 8 127 77) ;; bytevector?
63 (jne 18) ;; -> L4
64 (word-ref/immediate 7 8 1)
65 (imm-u64<? 7 3)
66 (jnl 13) ;; -> L3
67 (usub/immediate 12 7 3)
68 (pointer-ref/immediate 7 8 2)
69 (f32-set! 7 9 11)
70 (u64<? 5 12)
71 (jnl 6) ;; -> L2
72 (f32-set! 7 5 10)
73 (mov 12 8)
74 (reset-frame 1) ;; 1 slot
75 (handle-interrupts)
76 (return-values)
L2:
77 (throw/value+data 6 331) ;; #(out-of-range "bytevector-ieee-single-native-set!" "Argument 2 out of rang…")
L3:
79 (throw/value+data 12 329) ;; #(out-of-range "bytevector-ieee-single-native-set!" "Argument 2 out of rang…")
L4:
81 (throw/value+data 8 353) ;; #(wrong-type-arg "bytevector-ieee-single-native-set!" "Wrong type argument …")
L5:
83 (throw/value 11 377) ;; #(misc-error #f "cannot normalize vector with 0 magnitude ~S") at (unknown file):457:6
L6:
85 (throw/value+data 6 391) ;; #(out-of-range "bytevector-ieee-single-native-ref" "Argument 2 out of range…") at (unknown file):455:13
L7:
87 (throw/value+data 12 389) ;; #(out-of-range "bytevector-ieee-single-native-ref" "Argument 2 out of range…")
L8:
89 (throw/value+data 11 395) ;; #(wrong-type-arg "bytevector-ieee-single-native-ref" "Wrong type argument i…")
```
This looks pretty good! All the math is done with unboxed floats and
no heap floats are allocated at all. Unboxed floats are pulled out of
the bytevector with `f32-ref` and stuffed back in with `f32-set!`.
But we’re still allocating a new bytevector at the end. This is
generally fine, but for *reeeeaaally* performance sensitive code we
want to avoid this allocation, too. For this case, we can write a
variant of `normalize` that mutates another 2D vector to store the
result.
```scheme
(define-inlinable (set-vec2-x! v x)
(f32vector-set! v 0 x))
(define-inlinable (set-vec2-y! v y)
(f32vector-set! v 1 y))
(define (normalize! v dst)
(let ((mag (magnitude v)))
(when (= mag 0.0)
(error "cannot normalize vector with 0 magnitude" v))
(set-vec2-x! dst (/ (vec2-x v) mag))
(set-vec2-y! dst (/ (vec2-y v) mag))))
```
We can then define the functional version in terms of the imperative
version:
```scheme
(define (normalize v)
(let ((v* (vec2 0.0 0.0)))
(normalize! v v*)
v*))
```
Now we have options. We can use the less elegant, imperative variant
when we can’t afford to allocate and use the functional variant
otherwise. This is a simplified version of how vecs, matrices, and
rects work in Chickadee.
Let’s compare the two. First, the functional API:
```scheme
scheme@(guile-user)> ,profile (let ((v (vec2 3.0 4.0)))
(let lp ((i 0))
(when (< i 100000000)
(normalize v)
(lp (+ i 1)))))
% cumulative self
time seconds seconds procedure
46.46 7.84 7.73 make-srfi-4-vector
31.61 5.26 5.26 <current input>:425:19:normalize!
12.95 16.23 2.15 <current input>:432:19:normalize
5.87 0.98 0.98 ice-9/boot-9.scm:408:31:make-f32vector
2.42 16.63 0.40 <current input>:439:32
0.69 0.11 0.11 %after-gc-thunk
0.00 0.11 0.00 anon #x15fd5c0
---
Sample count: 579
Total time: 16.633395281 seconds (12.628994384 seconds in GC)
```
And now the imperative API:
```scheme
scheme@(guile-user)> ,profile (let ((v (vec2 3.0 4.0))
(dst (vec2 0.0 0.0)))
(let lp ((i 0))
(when (< i 100000000)
(normalize! v dst)
(lp (+ i 1)))))
% cumulative self
time seconds seconds procedure
91.03 1.13 1.13 <current input>:272:19:normalize!
8.97 1.24 0.11 <current input>:343:32
---
Sample count: 78
Total time: 1.244961515 seconds (0.0 seconds in GC)
```
13x faster and no GC! To use this technique in your own program, you
may want to use something like a pool to reuse objects over and over;
or just stash an object somewhere to use as scratch space.
Note: Unlike example 2, these optimizations *do* happen on Guile 3.0.9
and IIRC any stable Guile 3.0.x release.
### Happy hacking
Well, that’s all I’ve got! There are other sources of allocation to
be aware of, like closures, but I couldn’t come up with clean
examples. If I think of something good maybe I’ll update this post
later.
To reiterate, most of the code you write doesn’t need to be examined
this closely. Don’t rush off and use `define-inlinable` everywhere
and inflate the size of your compiled modules! Let the profiler focus
your attention on what matters. May your Scheme be speedy and your
GCs infrequent. 🙏
|