1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
|
<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd">
<html>
<!-- Copyright (C) 2017, 2018, 2019 David Thompson davet@gnu.org
Permission is granted to copy, distribute and/or modify this document
under the terms of the GNU Free Documentation License, Version 1.3
or any later version published by the Free Software Foundation;
with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts.
A copy of the license is included in the section entitled "GNU
Free Documentation License".
A copy of the license is also available from the Free Software
Foundation Web site at http://www.gnu.org/licenses/fdl.html.
* Chickadee: (chickadee). Game programming toolkit for Guile.
The document was typeset with
http://www.texinfo.org/ (GNU Texinfo).
-->
<!-- Created by GNU Texinfo 6.5, http://www.gnu.org/software/texinfo/ -->
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8">
<title>Buffers (The Chickadee Game Toolkit)</title>
<meta name="description" content="Buffers (The Chickadee Game Toolkit)">
<meta name="keywords" content="Buffers (The Chickadee Game Toolkit)">
<meta name="resource-type" content="document">
<meta name="distribution" content="global">
<meta name="Generator" content="makeinfo">
<link href="index.html#Top" rel="start" title="Top">
<link href="Index.html#Index" rel="index" title="Index">
<link href="index.html#SEC_Contents" rel="contents" title="Table of Contents">
<link href="Graphics.html#Graphics" rel="up" title="Graphics">
<link href="Shaders.html#Shaders" rel="next" title="Shaders">
<link href="Rendering-Engine.html#Rendering-Engine" rel="prev" title="Rendering Engine">
<style type="text/css">
<!--
a.summary-letter {text-decoration: none}
blockquote.indentedblock {margin-right: 0em}
blockquote.smallindentedblock {margin-right: 0em; font-size: smaller}
blockquote.smallquotation {font-size: smaller}
div.display {margin-left: 3.2em}
div.example {margin-left: 3.2em}
div.lisp {margin-left: 3.2em}
div.smalldisplay {margin-left: 3.2em}
div.smallexample {margin-left: 3.2em}
div.smalllisp {margin-left: 3.2em}
kbd {font-style: oblique}
pre.display {font-family: inherit}
pre.format {font-family: inherit}
pre.menu-comment {font-family: serif}
pre.menu-preformatted {font-family: serif}
pre.smalldisplay {font-family: inherit; font-size: smaller}
pre.smallexample {font-size: smaller}
pre.smallformat {font-family: inherit; font-size: smaller}
pre.smalllisp {font-size: smaller}
span.nolinebreak {white-space: nowrap}
span.roman {font-family: initial; font-weight: normal}
span.sansserif {font-family: sans-serif; font-weight: normal}
ul.no-bullet {list-style: none}
@media (min-width: 1140px) {
body {
margin-left: 14rem;
margin-right: 4rem;
max-width: 52rem;
}
}
@media (min-width: 800px) and (max-width: 1140px) {
body {
margin-left: 6rem;
margin-right: 4rem;
max-width: 52rem;
}
}
@media (max-width: 800px) {
body {
margin: 1rem;
}
}
-->
</style>
<link rel="stylesheet" type="text/css" href="https://dthompson.us/css/dthompson.css">
</head>
<body lang="en">
<a name="Buffers"></a>
<div class="header">
<p>
Next: <a href="Shaders.html#Shaders" accesskey="n" rel="next">Shaders</a>, Previous: <a href="Rendering-Engine.html#Rendering-Engine" accesskey="p" rel="prev">Rendering Engine</a>, Up: <a href="Graphics.html#Graphics" accesskey="u" rel="up">Graphics</a> [<a href="index.html#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="Index.html#Index" title="Index" rel="index">Index</a>]</p>
</div>
<hr>
<a name="Buffers-1"></a>
<h4 class="subsection">2.3.11 Buffers</h4>
<p>Alright, let’s brush aside all of those pretty high level abstractions
and discuss what is going on under the hood. The GPU exists as a
discrete piece of hardware separate from the CPU. In order to make it
draw things, we must ship lots of data out of our memory space and
into the GPU. The <code>(chickadee render buffer</code>) module provides an
API for manipulating GPU buffers.
</p>
<p>In OpenGL terminology, a chunk of data allocated on the GPU is a
“vertex buffer object” or VBO. For example, here is a bytevector
that could be transformed into a GPU buffer that packs together vertex
position and texture coordinates:
</p>
<div class="example">
<pre class="example">(use-modules (chickadee render buffer) (srfi srfi-4))
(define data
(f32vector -8.0 -8.0 ; 2D vertex
0.0 0.0 ; 2D texture coordinate
8.0 -8.0 ; 2D vertex
1.0 0.0 ; 2D texture coordinate
8.0 8.0 ; 2D vertex
1.0 1.0 ; 2D texture coordinate
-8.0 8.0 ; 2D vertex
0.0 1.0)) ; 2D texture coordinate
</pre></div>
<p>This data represents a textured 16x16 square centered on the
origin. To send this data to the GPU, the <code>make-buffer</code> procedure
is needed:
</p>
<div class="example">
<pre class="example">(define buffer (make-buffer data #:stride 16))
</pre></div>
<p>The <code>#:stride</code> keyword argument indicates how many bytes make up
each element of the buffer. In this case, there are 4 floats per
element: 2 for the vertex, and 2 for the texture coordinate. A 32-bit
float is 4 bytes in length, so the buffer’s stride is 16.
</p>
<p>Within a VBO, one or more “attributes”, as OpenGL calls them, may be
present. Attributes are subregions within the buffer that have a
particular data type. In this case, there are two attributes packed
into the buffer. To provided a typed view into a buffer, the
<code>make-buffer-view</code> procedure is needed:
</p>
<div class="example">
<pre class="example">(define vertices
(make-buffer-view #:buffer buffer
#:type 'vec2
#:component-type 'float
#:length 4))
(define texcoords
(make-buffer-view #:buffer buffer
#:type 'vec2
#:component-type 'float
#:length 4
#:offset 8))
</pre></div>
<p>To render a square, the GPU needs to draw two triangles, which means
we need 6 vertices in total. However, the above buffer only contains
data for 4 vertices. This is becase there are only 4 unique vertices
for a square, but 2 of them must be repeated for each triangle. To
work with deduplicated vertex data, an “index buffer” must be
created.
</p>
<div class="example">
<pre class="example">(define index-buffer
(make-buffer (u32vector 0 3 2 0 2 1)
#:target 'index)
(define indices
(make-buffer-view #:type 'scalar
#:component-type 'unsigned-int
#:buffer index-buffer))
</pre></div>
<p>Note the use of the <code>#:target</code> keyword argument. It is required
because the GPU treats index data in a special way and must be told
which data is index data.
</p>
<p>Now that the buffer views representing each attribute have been
created, all that’s left is to bind them all together in a “vertex
array object”, or VAO. Vertex arrays associate each buffer view
with an attribute index on the GPU. The indices that are chosen must
correspond with the indices that the shader (see <a href="Shaders.html#Shaders">Shaders</a>) expects
for each attribute.
</p>
<div class="example">
<pre class="example">(define vertex-array
(make-vertex-array #:indices indices
#:attributes `((0 . ,vertices)
(1 . ,texcoords))))
</pre></div>
<p>With the vertex array created, the GPU is now fully aware of how to
interpret the data that it has been given in the original buffer.
Actually rendering this square is left as an exercise to the reader.
See the <a href="Shaders.html#Shaders">Shaders</a> section and the <code>gpu-apply</code> procedure in
<a href="Rendering-Engine.html#Rendering-Engine">Rendering Engine</a> for the remaining pieces of a successful draw
call. Additionally, consider reading the source code for sprites,
shapes, or particles to see GPU buffers in action.
</p>
<p>Without further ado, the API reference:
</p>
<dl>
<dt><a name="index-make_002dbuffer"></a>Procedure: <strong>make-buffer</strong> <em>data [#:name "anonymous"] [#:length] [#:offset 0] [#:stride 0] [#:target <code>vertex</code>] [#:usage <code>static</code>]</em></dt>
<dd>
<p>Upload <var>data</var>, a bytevector, to the GPU. By default, the entire
bytevector is uploaded. A subset of the data may be uploaded by
specifying the <var>offset</var>, the index of the first byte to be
uploaded, and <var>length</var>, the number of bytes to upload.
</p>
<p>If <var>data</var> is <code>#f</code>, allocate <var>length</var> bytes of fresh GPU
memory instead.
</p>
<p><var>target</var> and <var>usage</var> are hints that tell the GPU how the
buffer is intended to be used.
</p>
<p><var>target</var> may be:
</p>
<ul>
<li> <code>vertex</code>
Vertex attribute data.
</li><li> <code>index</code>
Index buffer data.
</li></ul>
<p><var>usage</var> may be:
</p>
<ul>
<li> <code>static</code>
The buffer data will not be modified after creation.
</li><li> <code>stream</code>
The buffer data will be modified frequently.
</li></ul>
<p><var>name</var> is simply an arbitrary string for debugging purposes that
is never sent to the GPU.
</p></dd></dl>
<dl>
<dt><a name="index-buffer_003f"></a>Procedure: <strong>buffer?</strong> <em>obj</em></dt>
<dd><p>Return <code>#t</code> if <var>obj</var> is a GPU buffer.
</p></dd></dl>
<dl>
<dt><a name="index-index_002dbuffer_003f"></a>Procedure: <strong>index-buffer?</strong> <em>buffer</em></dt>
<dd><p>Return <code>#t</code> if <var>buffer</var> is an index buffer.
</p></dd></dl>
<dl>
<dt><a name="index-null_002dbuffer"></a>Variable: <strong>null-buffer</strong></dt>
<dd><p>Represents the absence of a buffer.
</p></dd></dl>
<dl>
<dt><a name="index-buffer_002dname"></a>Procedure: <strong>buffer-name</strong> <em>buffer</em></dt>
<dd><p>Return the name of <var>buffer</var>.
</p></dd></dl>
<dl>
<dt><a name="index-buffer_002dlength"></a>Procedure: <strong>buffer-length</strong> <em>buffer</em></dt>
<dd><p>Return the length of <var>buffer</var>.
</p></dd></dl>
<dl>
<dt><a name="index-buffer_002dstride"></a>Procedure: <strong>buffer-stride</strong> <em>buffer</em></dt>
<dd><p>Return the amount of space, in bytes, between each element in
<var>buffer</var>.
</p></dd></dl>
<dl>
<dt><a name="index-buffer_002dtarget"></a>Procedure: <strong>buffer-target</strong> <em>buffer</em></dt>
<dd><p>Return the the intended usage of <var>buffer</var>, either <code>vertex</code> or
<code>index</code>.
</p></dd></dl>
<dl>
<dt><a name="index-buffer_002dusage"></a>Procedure: <strong>buffer-usage</strong> <em>buffer</em></dt>
<dd><p>Return the intended usage of <var>buffer</var>, either <code>static</code> for
buffer data that will not change once sent to the GPU, or
<code>stream</code> for buffer data that will be frequently updated from the
client-side.
</p></dd></dl>
<dl>
<dt><a name="index-buffer_002ddata"></a>Procedure: <strong>buffer-data</strong> <em>buffer</em></dt>
<dd><p>Return a bytevector containing all the data within <var>buffer</var>. If
<var>buffer</var> has not been mapped (see <code>with-mapped-buffer</code>) then
this procedure will return <code>#f</code>.
</p></dd></dl>
<dl>
<dt><a name="index-with_002dmapped_002dbuffer"></a>Syntax: <strong>with-mapped-buffer</strong> <em>buffer body …</em></dt>
<dd><p>Evaluate <var>body</var> in the context of <var>buffer</var> having its data
synced from GPU memory to RAM. In this context, <code>buffer-data</code>
will return a bytevector of all the data stored in <var>buffer</var>. When
program execution exits this form, the data (including any
modifications) is synced back to the GPU.
</p>
<p>This form is useful for streaming buffers that need to update their
contents dynamically, such as a sprite batch.
</p></dd></dl>
<dl>
<dt><a name="index-make_002dbuffer_002dview"></a>Procedure: <strong>make-buffer-view</strong> <em>#:buffer #:type #:component-type #:length [#:offset <code>0</code>] [#:divisor <code>1</code>] [#:name <code>"anonymous"</code>]</em></dt>
<dd>
<p>Return a new buffer view for <var>buffer</var> starting at byte index
<var>offset</var> of <var>length</var> elements, where each element is of
<var>type</var> and composed of <var>component-type</var> values.
</p>
<p>Valid values for <var>type</var> are:
</p>
<ul>
<li> <code>scalar</code>
single number
</li><li> <code>vec2</code>
2D vector
</li><li> <code>vec3</code>
3D vector
</li><li> <code>vec4</code>
4D vector
</li><li> <code>mat2</code>
2x2 matrix
</li><li> <code>mat3</code>
3x3 matrix
</li><li> <code>mat4</code>
4x4 matrix
</li></ul>
<p>Valid values for <var>component-type</var> are:
</p>
<ul>
<li> <code>byte</code>
</li><li> <code>unsigned-byte</code>
</li><li> <code>short</code>
</li><li> <code>unsigned-short</code>
</li><li> <code>int</code>
</li><li> <code>unsigned-int</code>
</li><li> <code>float</code>
</li><li> <code>double</code>
</li></ul>
<p><var>divisor</var> is only needed for instanced rendering applications (see
<code>gpu-apply/instanced</code> in <a href="Rendering-Engine.html#Rendering-Engine">Rendering Engine</a>) and represents
how many instances each vertex element applies to. A divisor of 0
means that a single element is used for every instance and is used for
the data being instanced. A divisor of 1 means that each element is
used for 1 instance. A divisor of 2 means that each element is used
for 2 instances, and so on.
</p></dd></dl>
<dl>
<dt><a name="index-buffer_002dview_003f"></a>Procedure: <strong>buffer-view?</strong> <em>obj</em></dt>
<dd><p>Return <code>#t</code> if <var>obj</var> is a buffer view.
</p></dd></dl>
<dl>
<dt><a name="index-buffer_002dview_002d_003ebuffer"></a>Procedure: <strong>buffer-view->buffer</strong> <em>buffer-view</em></dt>
<dd><p>Return the buffer that <var>buffer-view</var> is using.
</p></dd></dl>
<dl>
<dt><a name="index-buffer_002dview_002dname"></a>Procedure: <strong>buffer-view-name</strong> <em>buffer-view</em></dt>
<dd><p>Return the name of <var>buffer-view</var>.
</p></dd></dl>
<dl>
<dt><a name="index-buffer_002dview_002doffset"></a>Procedure: <strong>buffer-view-offset</strong> <em>buffer-view</em></dt>
<dd><p>Return the byte offset of <var>buffer-view</var>.
</p></dd></dl>
<dl>
<dt><a name="index-buffer_002dview_002dtype"></a>Procedure: <strong>buffer-view-type</strong> <em>buffer-view</em></dt>
<dd><p>Return the data type of <var>buffer-view</var>.
</p></dd></dl>
<dl>
<dt><a name="index-buffer_002dview_002dcomponent_002dtype"></a>Procedure: <strong>buffer-view-component-type</strong> <em>buffer-view</em></dt>
<dd><p>Return the component data type of <var>buffer-view</var>
</p></dd></dl>
<dl>
<dt><a name="index-buffer_002dview_002ddivisor"></a>Procedure: <strong>buffer-view-divisor</strong> <em>buffer-view</em></dt>
<dd><p>Return the instance divisor for <var>buffer-view</var>.
</p></dd></dl>
<dl>
<dt><a name="index-with_002dmapped_002dbuffer_002dview"></a>Syntax: <strong>with-mapped-buffer-view</strong> <em>buffer-view body …</em></dt>
<dd>
<p>Evaluate <var>body</var> in the context of <var>buffer-view</var> having its
data synced from GPU memory to RAM. See <code>with-mapped-buffer</code> for
more information.
</p></dd></dl>
<dl>
<dt><a name="index-make_002dvertex_002darray"></a>Procedure: <strong>make-vertex-array</strong> <em>#:indices #:attributes [#:mode <code>triangles</code>]</em></dt>
<dd>
<p>Return a new vertex array using the index data within the buffer view
<var>indices</var> and the vertex attribute data within <var>attributes</var>.
</p>
<p><var>attributes</var> is an alist mapping shader attribute indices to typed
buffers containing vertex data:
</p>
<div class="example">
<pre class="example">`((1 . ,buffer-view-a)
(2 . ,buffer-view-b)
…)
</pre></div>
<p>By default, the vertex array is interpreted as containing a series of
triangles. If another primtive type is desired, the <var>mode</var>
keyword argument may be overridden. The following values are
supported:
</p>
<ul>
<li> <code>points</code>
</li><li> <code>lines</code>
</li><li> <code>line-loop</code>
</li><li> <code>line-strip</code>
</li><li> <code>triangles</code>
</li><li> <code>triangle-strip</code>
</li><li> <code>triangle-fan</code>
</li></ul>
</dd></dl>
<dl>
<dt><a name="index-null_002dvertex_002darray"></a>Variable: <strong>null-vertex-array</strong></dt>
<dd><p>Represents the absence of a vertex array.
</p></dd></dl>
<dl>
<dt><a name="index-vertex_002darray_003f"></a>Procedure: <strong>vertex-array?</strong> <em>obj</em></dt>
<dd><p>Return <code>#t</code> if <var>obj</var> is a vertex array.
</p></dd></dl>
<dl>
<dt><a name="index-vertex_002darray_002dindices"></a>Procedure: <strong>vertex-array-indices</strong> <em>vertex-array</em></dt>
<dd><p>Return the buffer view containing index data for <var>vertex-array</var>.
</p></dd></dl>
<dl>
<dt><a name="index-vertex_002darray_002dattributes"></a>Procedure: <strong>vertex-array-attributes</strong> <em>vertex-array</em></dt>
<dd><p>Return the attribute index -> buffer view mapping of vertex attribute
data for <var>vertex-array</var>.
</p></dd></dl>
<dl>
<dt><a name="index-vertex_002darray_002dmode"></a>Procedure: <strong>vertex-array-mode</strong> <em>vertex-array</em></dt>
<dd><p>Return the primitive rendering mode for <var>vertex-array</var>.
</p></dd></dl>
<hr>
<div class="header">
<p>
Next: <a href="Shaders.html#Shaders" accesskey="n" rel="next">Shaders</a>, Previous: <a href="Rendering-Engine.html#Rendering-Engine" accesskey="p" rel="prev">Rendering Engine</a>, Up: <a href="Graphics.html#Graphics" accesskey="u" rel="up">Graphics</a> [<a href="index.html#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="Index.html#Index" title="Index" rel="index">Index</a>]</p>
</div>
</body>
</html>
|