Happy Patching

David Thompson

2015-06-25

Outline

Introduction

Commits

Pull Requests

References

Goals

v

Improve the commit log

v

Improve the quality of individual patches

v

Improve the quality of pull requests

v

Improve the code review workflow

Why?

v

More readable history

Easier to understand why a change was made

v

v

Easier to git bisect to find breaking changes

v

Easier to git revert those breaking changes

v

Easier to review pull requests

v

Faster code review loop

What's in a patch?

A patch:

» Stands alone as a single, complete, logical change
» Has a descriptive change log message

» Has no extraneous modifications (whitespace changes,
fixing a typo in an unrelated file, etc.)

» Follows established coding conventions closely

Example

2ad72327d17a1479£586af3cdb7123ffec2d9719
Author: Ricardo Wurmus <ricardo.wurmus@mdc-berlin.de>
Date: Tue Jun 23 16:35:16 2015 +0200

view: json: Add "location" field to JSON representation.
* guix/web/view/json.scm (package->json): Add "location" field.

1 file changed, 4 insertions(+)
guix/web/view/json.scm | 4 ++++

Modified guix/web/view/json.scm
diff --git a/guix/web/view/json.scm b/guix/web/view/json.scm
index e3f8bcl..73b78f3 100644
--- a/guix/web/view/json.scm
+++ b/guix/web/view/json.scm
Q0 -24,8 +24,9 0@
:use-module (web uri)
:use-module (guix licenses)
:use-module (guix packages)
:use-module (guix profiles)
:use-module (guix utils)
:use-module (gnu packages)
:use-module (guix web package)
:export (all-packages-json
view-package-json
Q0 -62,8 +63,11 @@
("name" , (package-name package))
("version" , (package-version package))
("synopsis" , (package-synopsis package))
("description" , (package-description package))

*

+
IR

+ ("location" ,(last (string-split (location-file
+ (package-location package))
+ #\/)))

("h ", (package-home-page package))

("license" ,(serialize-license package))
,@(if serialize-inputs?
((inputs" ,(serialize-inputs (package-inputs package)))

Short Log

The first line of a commit log should:

» Be a short sentence (< 72 characters maximum, but
shoot for < 50)

» Use imperative, passive voice ("Add awesome feature.'
vs. "Added awesome feature.")

» Prefix with an identifier for the general area you were
working in ("tests: Fix the frob." or "gradebook: Give
everyone an A.")

» Always end with a period.

Log Body

The body of a commit log should:
» Explain or justify the change
» For a bug fix, provide a ticket number or link to the ticket

» Explain what changes were made at a high level (The
GNU Changelog standard is worth a read)

» Be word wrapped to 72 characters per line

Workflow

» Review the full diff before commiting (don't git add and
immediately git commit)

» Use before commit hooks to run linters such as Rubocop

» Use your $EDITOR, not the -m flag, for writing your
commit log

Pull Requests

A pull request should:

>

>

>

Have a descriptive title and summary of the changes made
Contain separate commits for logically separate changes

Not contain any "fix up" commits ("Fix typo.", "Fix
test.", "Remove commented code.")

Be able to be thoroughly reviewed by a single person (No
massive patch sets containing weeks of work by several
people)

Code Review Goals

Shared responsibility between submitter and reviewer

v

Prioritize code review

v

» Disassociate pull requests from being strictly tied to a
story/epic/task/etc.

v

Make code review — QA — production phases happen
faster

Programmer Workflow

» Commit as often as you'd like, but squash or otherwise
rewrite your commits into logical patches before asking
for code review

» Consider WIP branches ("story XXXX", "task XXXX",
etc.) to be volatile (because they are), and anticipate
that they could be rebased at any moment

» In response to feedback, squash the new "fix up"
commits into the respective commit that is being fixed
with an interactive rebase

» Push the new, rewritten branch with a git push
--force (Scary! But GitHub doesn't play nicely with a
safer method)

Reviewer Workflow

» Inspect patches individually as opposed to looking at the
full diff in GitHub's web interface; each commit should
stand alone

» Refer to coding conventions when pointing out style
problems

» Follow up on changes made in response to your feedback
quickly

References

» Git Patch Guidelines —
http://git.kernel.org/cgit/git/git.git/tree/
Documentation/SubmittingPatches?id=HEAD

» GNU Change Log Standards — https://www.gnu.org/
prep/standards/html_node/Change-Logs.html

» On Code Review —
http://glen.nu/ramblings/oncodereview.php

» A Note About Git Commit Messages —
http://tbaggery.com/2008/04/19/
a-note-about-git-commit-messages.html

http://git.kernel.org/cgit/git/git.git/tree/Documentation/SubmittingPatches?id=HEAD
http://git.kernel.org/cgit/git/git.git/tree/Documentation/SubmittingPatches?id=HEAD
https://www.gnu.org/prep/standards/html_node/Change-Logs.html
https://www.gnu.org/prep/standards/html_node/Change-Logs.html
http://glen.nu/ramblings/oncodereview.php
http://tbaggery.com/2008/04/19/a-note-about-git-commit-messages.html
http://tbaggery.com/2008/04/19/a-note-about-git-commit-messages.html

	Introduction
	Commits
	Pull Requests
	References

