
Happy Patching

David Thompson

2015-06-25

Outline

Introduction

Commits

Pull Requests

References

Goals

I Improve the commit log
I Improve the quality of individual patches
I Improve the quality of pull requests
I Improve the code review workflow

Why?

I More readable history
I Easier to understand why a change was made
I Easier to git bisect to find breaking changes
I Easier to git revert those breaking changes
I Easier to review pull requests
I Faster code review loop

What’s in a patch?

A patch:

I Stands alone as a single, complete, logical change
I Has a descriptive change log message
I Has no extraneous modifications (whitespace changes,

fixing a typo in an unrelated file, etc.)
I Follows established coding conventions closely

Example
aad72327d17a1479f586af3cdb7123ffec2d9719
Author: Ricardo Wurmus <ricardo.wurmus@mdc-berlin.de>
Date: Tue Jun 23 16:35:16 2015 +0200

view: json: Add "location" field to JSON representation.

* guix/web/view/json.scm (package->json): Add "location" field.

1 file changed, 4 insertions(+)
guix/web/view/json.scm | 4 ++++

Modified guix/web/view/json.scm
diff --git a/guix/web/view/json.scm b/guix/web/view/json.scm
index e3f8bc1..73b78f3 100644
--- a/guix/web/view/json.scm
+++ b/guix/web/view/json.scm
@@ -24,8 +24,9 @@

#:use-module (web uri)
#:use-module (guix licenses)
#:use-module (guix packages)
#:use-module (guix profiles)

+ #:use-module (guix utils)
#:use-module (gnu packages)
#:use-module (guix web package)
#:export (all-packages-json

view-package-json
@@ -62,8 +63,11 @@

("name" ,(package-name package))
("version" ,(package-version package))
("synopsis" ,(package-synopsis package))
("description" ,(package-description package))

+ ("location" ,(last (string-split (location-file
+ (package-location package))
+ #\/)))

("homepage" ,(package-home-page package))
("license" ,(serialize-license package))
,@(if serialize-inputs?

‘(("inputs" ,(serialize-inputs (package-inputs package)))

Short Log

The first line of a commit log should:

I Be a short sentence (≤ 72 characters maximum, but
shoot for ≤ 50)

I Use imperative, passive voice ("Add awesome feature."
vs. "Added awesome feature.")

I Prefix with an identifier for the general area you were
working in ("tests: Fix the frob." or "gradebook: Give
everyone an A.")

I Always end with a period.

Log Body

The body of a commit log should:

I Explain or justify the change
I For a bug fix, provide a ticket number or link to the ticket
I Explain what changes were made at a high level (The

GNU ChangeLog standard is worth a read)
I Be word wrapped to 72 characters per line

Workflow

I Review the full diff before commiting (don’t git add and
immediately git commit)

I Use before commit hooks to run linters such as Rubocop
I Use your $EDITOR, not the -m flag, for writing your

commit log

Pull Requests

A pull request should:

I Have a descriptive title and summary of the changes made
I Contain separate commits for logically separate changes
I Not contain any "fix up" commits ("Fix typo.", "Fix

test.", "Remove commented code.")
I Be able to be thoroughly reviewed by a single person (No

massive patch sets containing weeks of work by several
people)

Code Review Goals

I Shared responsibility between submitter and reviewer
I Prioritize code review
I Disassociate pull requests from being strictly tied to a

story/epic/task/etc.
I Make code review → QA → production phases happen

faster

Programmer Workflow

I Commit as often as you’d like, but squash or otherwise
rewrite your commits into logical patches before asking
for code review

I Consider WIP branches ("story_XXXX", "task_XXXX",
etc.) to be volatile (because they are), and anticipate
that they could be rebased at any moment

I In response to feedback, squash the new "fix up"
commits into the respective commit that is being fixed
with an interactive rebase

I Push the new, rewritten branch with a git push
--force (Scary! But GitHub doesn’t play nicely with a
safer method)

Reviewer Workflow

I Inspect patches individually as opposed to looking at the
full diff in GitHub’s web interface; each commit should
stand alone

I Refer to coding conventions when pointing out style
problems

I Follow up on changes made in response to your feedback
quickly

References

I Git Patch Guidelines —
http://git.kernel.org/cgit/git/git.git/tree/
Documentation/SubmittingPatches?id=HEAD

I GNU Change Log Standards — https://www.gnu.org/
prep/standards/html_node/Change-Logs.html

I On Code Review —
http://glen.nu/ramblings/oncodereview.php

I A Note About Git Commit Messages —
http://tbaggery.com/2008/04/19/
a-note-about-git-commit-messages.html

http://git.kernel.org/cgit/git/git.git/tree/Documentation/SubmittingPatches?id=HEAD
http://git.kernel.org/cgit/git/git.git/tree/Documentation/SubmittingPatches?id=HEAD
https://www.gnu.org/prep/standards/html_node/Change-Logs.html
https://www.gnu.org/prep/standards/html_node/Change-Logs.html
http://glen.nu/ramblings/oncodereview.php
http://tbaggery.com/2008/04/19/a-note-about-git-commit-messages.html
http://tbaggery.com/2008/04/19/a-note-about-git-commit-messages.html

	Introduction
	Commits
	Pull Requests
	References

