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About me

• GNU project volunteer

• GNU Guile user and contributor since 2012

• GNU Guix contributor since 2013

• Day job: Ruby + JavaScript web development /
“DevOps”
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Overview

• Problems with application packaging and deployment

• Intro to functional package and configuration
management

• Towards the future

• How you can help
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User autonomy and control

It is becoming increasingly difficult to have control over your
own computing:

• GNU/Linux package managers not meeting user needs

• Self-hosting web applications requires too much time and
effort

• Growing number of projects recommend installation via
curl | sudo bash 1 or otherwise avoid using system
package managers

• Users unable to verify that a given binary corresponds to
the source code

1http://curlpipesh.tumblr.com/
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User autonomy and control

“Debian and other distributions are going to be that thing you
run Docker on, little more.” 2

2“ownCloud and distribution packaging”
http://lwn.net/Articles/670566/
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User autonomy and control

This is very bad for desktop users and system administrators
alike. We must regain control!
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What’s wrong with Apt/Yum/Pacman/etc.?

• Global state (/usr) that prevents multiple versions of a
package from coexisting

• Non-atomic installation, removal, upgrade of software

• No way to roll back

• Nondeterminstic package builds (though this is changing!)

• Reliance on pre-built binaries provided by a single point of
trust

• Requires superuser privileges
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The problem is bigger

Proliferation of language-specific package managers and binary
bundles that complicate secure system maintenance.
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Web applications

Web applications are particularly painful.
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Web applications

It’s common for today’s web applications to require two or
more package managers to get all dependencies.
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Web applications

Integrating a web application packaged only for a
language-specific manager into a system package manager
proves difficult. NodeJS is particularly frightening. 3

3“Let’s Package jQuery: A Javascript Packaging Dystopian Novella”
http://dustycloud.org/blog/javascript-packaging-dystopia/
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Web applications

There’s a growing number of popular web applications
(Hadoop, Chef Server, Cloudera, etc.) that no one knows how
to build from source! 4

4“Your big data toolchain is a big security risk!”
http://www.vitavonni.de/blog/201504/
2015042601-big-data-toolchains-are-a-security-risk.html
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Deployment

How do we automate application deployment without going
crazy?
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Chef/Puppet/Ansible/etc. are pretty good, right?

Building on top of mainstream package managers and distros
yields an unstable foundation.
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Problems with configuration management
software

• Imperative config management makes is overly-complex
and brittle (idempotence is hard)

• More reliable builds require spawning new machines and
building from scratch each time (sledgehammer)

• Made primarily for developers for server maintenance, but
all users could benefit
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Docker?

Surely Docker addresses these issues?
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Docker?

I’m afraid not.
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Problems with Docker

• Still imperative (though resulting images are immutable)

• Dockerfile DSL is not expressive

• Promotes one disk image per application to cover up
underlying package management mess 5

• No provenance

• Image layering is an ineffective caching strategy

• Does not compose (containers are only one important
use-case)

5“The sad state of sysadmin in the age of containers”
http://www.vitavonni.de/blog/201503/
2015031201-the-sad-state-of-sysadmin-in-the-age-of-containers.
html
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Problems with Docker

• Reliance on DockerHub binaries proves to be insecure 6

6“Over 30% of Official Images in Docker Hub Contain High Priority
Security Vulnerabilities”
http://www.banyanops.com/blog/analyzing-docker-hub/
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Well that was pessimistic

Computers are hard. Maybe we should just farm potatoes
instead.
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Meet GNU Guix

Guix is the functional package management tool for the GNU
system.

It is based on the pioneering work of the Nix project. 7

7http://nixos.org/nix/
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What does “functional” mean?

“Functional” in this context means treating package builds as
functions, in the mathematical sense.

emacs = f(gcc,make,coreutils,...)
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Functional package management

Benefits:

• Build reproducibility

• Atomic upgrades and roll backs

• No single point of trust

• Unprivileged package management

• Multiple variants of the same software may coexist
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Functional package management

The complete dependency graph is captured, precisely, down
to the bootstrap binaries.

No SAT solver or other complex algorithm for dependency
resolution.
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Functional package management

To view package builds this way, Guix performs builds in an
isolated container in which only the specified dependencies are
accessible.

This maximizes build reproducibility.
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Reproducible builds

Reproducible builds produce bit-identical binaries when
performed multiple times under the same conditions.

Allows for independent verification that a given binary
corresponds to its alleged source code.
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Why?

WRITEME

Mention reproducible-builds.org
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Demo

guix package

guix challenge
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Hacking

Guix is made to be maximally hackable, taking inspiration
from Emacs.

We seek to intentionally blur the line between user and
developer.
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Choice of language

Guix is rather special in its choice of implementation language.
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Philosophy

It’s better to extend an existing language for package recipes
and configuration files rather than making a new,
domain-specific one.
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Embedded vs. External DSLs

Using an extensible programming language as a host has
several advantages compared to external DSLs:

• No new parser, interpreter/compiler, editor tools, etc. to
maintain

• Access to all available libraries of the host language

• Extensions to the host language can be used as a library
by others

Not all general-purpose programming languages are suitable
for embedding new languages, 8 so which did we choose?
8“How to be a good host: miniKanren as a case study”
https://www.youtube.com/watch?v=b9C3r3dQnNY
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Guile Scheme

• GNU Guile is a Scheme implementation and the official
extension language of the GNU project

• It’s a great choice for EDSLs because of Scheme’s
hygienic macro system

• It’s a great choice for Guix because purely functional
programming is well-supported in Scheme
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Guile goes with everything

Guix uses Guile for nearly everything:

• Initial RAM disk

• Init system (GNU Shepherd, formerly GNU dmd)

• Package recipes (including build scripts!)

• Command line tools

• Low-level POSIX/Linux utilities (such as
call-with-container)
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Guix as a library

• Guix is a big collection of Guile modules

• Packages are first-class Scheme objects

• Anyone can use Guix as a library to write new Guile
programs that manipulate package recipes, create new
user interfaces (like a web UI), etc.
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Example package recipe

WRITEME
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Demo

build package at the REPL in Emacs
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Other user interfaces

Demo Emacs UI, web prototype
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Importing packages from elsewhere

guix import

guix refresh
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Demo

Import a package from PyPI
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Development environments

guix environment
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Full-system configuration

WRITEME
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Example system configuration

WRITEME
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Demo

guix system vm
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Project status

WRITEME
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Future

WRITEME
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Join us!

We need interested hackers to help us:

• Add new packages

• Upgrade existing packages

• Write system services

• Improve the UI

• Add new tools

• Translate to new languages

• Maintain the web site

• Other stuff!
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Join us!

We are currently collecting donations via the FSF to purchase
new servers for our build farm!

https://gnu.org/software/guix/donate/
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Join us!

Chat with us in the #guix channel on Freenode or on the
guix-devel@gnu.org and help-guix@gnu.org mailing lists.
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Thank you!

Visit https://gnu.org/software/guix for source code,
documentation, past talks, etc.

Questions?
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Legal

© 2016 David Thompson <davet@gnu.org>

This presentation is licensed under the Creative Common
Attribute Share-Alike 4.0 International license.
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