
Functional Package and
Configuration Management with
GNU Guix

David Thompson

Wednesday, January 20th, 2016



About me

• GNU project volunteer

• GNU Guile user and contributor since 2012

• GNU Guix contributor since 2013

• Day job: Ruby + JavaScript web development /
“DevOps”

2



Overview

• Problems with application packaging and deployment

• Intro to functional package and configuration
management

• Towards the future

• How you can help

3



User autonomy and control

It is becoming increasingly difficult to have control over your
own computing:

• GNU/Linux package managers not meeting user needs

• Self-hosting web applications requires too much time and
effort

• Growing number of projects recommend installation via
curl | sudo bash 1 or otherwise avoid using system
package managers

• Users unable to verify that a given binary corresponds to
the source code

1http://curlpipesh.tumblr.com/

4

http://curlpipesh.tumblr.com/


User autonomy and control

“Debian and other distributions are going to be that thing you
run Docker on, little more.” 2

2“ownCloud and distribution packaging”
http://lwn.net/Articles/670566/

5

http://lwn.net/Articles/670566/


User autonomy and control

This is very bad for desktop users and system administrators
alike. We must regain control!

6



What’s wrong with Apt/Yum/Pacman/etc.?

• Global state (/usr) that prevents multiple versions of a
package from coexisting

• Non-atomic installation, removal, upgrade of software

• No way to roll back

• Nondeterminstic package builds (though this is changing!)

• Reliance on pre-built binaries provided by a single point of
trust

• Requires superuser privileges

7



The problem is bigger

Proliferation of language-specific package managers and binary
bundles that complicate secure system maintenance.

8



Web applications

Web applications are particularly painful.

9



Web applications

It’s common for today’s web applications to require two or
more package managers to get all dependencies.

10



Web applications

Integrating a web application packaged only for a
language-specific manager into a system package manager
proves difficult. NodeJS is particularly frightening. 3

3“Let’s Package jQuery: A Javascript Packaging Dystopian Novella”
http://dustycloud.org/blog/javascript-packaging-dystopia/

11

http://dustycloud.org/blog/javascript-packaging-dystopia/


Web applications

There’s a growing number of popular web applications
(Hadoop, Chef Server, Cloudera, etc.) that no one knows how
to build from source! 4

4“Your big data toolchain is a big security risk!”
http://www.vitavonni.de/blog/201504/
2015042601-big-data-toolchains-are-a-security-risk.html

12

http://www.vitavonni.de/blog/201504/2015042601-big-data-toolchains-are-a-security-risk.html
http://www.vitavonni.de/blog/201504/2015042601-big-data-toolchains-are-a-security-risk.html


Deployment

How do we automate application deployment without going
crazy?

13



Chef/Puppet/Ansible/etc. are pretty good, right?

Building on top of mainstream package managers and distros
yields an unstable foundation.

14



Problems with configuration management
software

• Imperative config management makes is overly-complex
and brittle (idempotence is hard)

• More reliable builds require spawning new machines and
building from scratch each time (sledgehammer)

• Made primarily for developers for server maintenance, but
all users could benefit

15



Docker?

Surely Docker addresses these issues?

16



Docker?

I’m afraid not.

17



Problems with Docker

• Still imperative (though resulting images are immutable)

• Dockerfile DSL is not expressive

• Promotes one disk image per application to cover up
underlying package management mess 5

• No provenance

• Image layering is an ineffective caching strategy

• Does not compose (containers are only one important
use-case)

5“The sad state of sysadmin in the age of containers”
http://www.vitavonni.de/blog/201503/
2015031201-the-sad-state-of-sysadmin-in-the-age-of-containers.
html

18

http://www.vitavonni.de/blog/201503/2015031201-the-sad-state-of-sysadmin-in-the-age-of-containers.html
http://www.vitavonni.de/blog/201503/2015031201-the-sad-state-of-sysadmin-in-the-age-of-containers.html
http://www.vitavonni.de/blog/201503/2015031201-the-sad-state-of-sysadmin-in-the-age-of-containers.html


Problems with Docker

• Reliance on DockerHub binaries proves to be insecure 6

6“Over 30% of Official Images in Docker Hub Contain High Priority
Security Vulnerabilities”
http://www.banyanops.com/blog/analyzing-docker-hub/

19

http://www.banyanops.com/blog/analyzing-docker-hub/


Well that was pessimistic

Computers are hard. Maybe we should just farm potatoes
instead.

20



Meet GNU Guix

Guix is the functional package management tool for the GNU
system.

It is based on the pioneering work of the Nix project. 7

7http://nixos.org/nix/

21

http://nixos.org/nix/


What does “functional” mean?

“Functional” in this context means treating package builds as
functions, in the mathematical sense.

emacs = f(gcc,make,coreutils,...)

22



Functional package management

Benefits:

• Build reproducibility

• Atomic upgrades and roll backs

• No single point of trust

• Unprivileged package management

• Multiple variants of the same software may coexist

23



Functional package management

The complete dependency graph is captured, precisely, down
to the bootstrap binaries.

No SAT solver or other complex algorithm for dependency
resolution.

24



Functional package management

To view package builds this way, Guix performs builds in an
isolated container in which only the specified dependencies are
accessible.

This maximizes build reproducibility.

25



Reproducible builds

Reproducible builds produce bit-identical binaries when
performed multiple times under the same conditions.

Allows for independent verification that a given binary
corresponds to its alleged source code.

26



Why?

WRITEME

Mention reproducible-builds.org

27



Demo

guix package

guix challenge

28



Hacking

Guix is made to be maximally hackable, taking inspiration
from Emacs.

We seek to intentionally blur the line between user and
developer.

29



Choice of language

Guix is rather special in its choice of implementation language.

30



Philosophy

It’s better to extend an existing language for package recipes
and configuration files rather than making a new,
domain-specific one.

31



Embedded vs. External DSLs

Using an extensible programming language as a host has
several advantages compared to external DSLs:

• No new parser, interpreter/compiler, editor tools, etc. to
maintain

• Access to all available libraries of the host language

• Extensions to the host language can be used as a library
by others

Not all general-purpose programming languages are suitable
for embedding new languages, 8 so which did we choose?
8“How to be a good host: miniKanren as a case study”
https://www.youtube.com/watch?v=b9C3r3dQnNY

32

https://www.youtube.com/watch?v=b9C3r3dQnNY


Guile Scheme

• GNU Guile is a Scheme implementation and the official
extension language of the GNU project

• It’s a great choice for EDSLs because of Scheme’s
hygienic macro system

• It’s a great choice for Guix because purely functional
programming is well-supported in Scheme

33



Guile goes with everything

Guix uses Guile for nearly everything:

• Initial RAM disk

• Init system (GNU Shepherd, formerly GNU dmd)

• Package recipes (including build scripts!)

• Command line tools

• Low-level POSIX/Linux utilities (such as
call-with-container)

34



Guix as a library

• Guix is a big collection of Guile modules

• Packages are first-class Scheme objects

• Anyone can use Guix as a library to write new Guile
programs that manipulate package recipes, create new
user interfaces (like a web UI), etc.

35



Example package recipe

WRITEME

36



Demo

build package at the REPL in Emacs

37



Other user interfaces

Demo Emacs UI, web prototype

38



Importing packages from elsewhere

guix import

guix refresh

39



Demo

Import a package from PyPI

40



Development environments

guix environment

41



Full-system configuration

WRITEME

42



Example system configuration

WRITEME

43



Demo

guix system vm

44



Project status

WRITEME

45



Future

WRITEME

46



Join us!

We need interested hackers to help us:

• Add new packages

• Upgrade existing packages

• Write system services

• Improve the UI

• Add new tools

• Translate to new languages

• Maintain the web site

• Other stuff!

47



Join us!

We are currently collecting donations via the FSF to purchase
new servers for our build farm!

https://gnu.org/software/guix/donate/

48

https://gnu.org/software/guix/donate/


Join us!

Chat with us in the #guix channel on Freenode or on the
guix-devel@gnu.org and help-guix@gnu.org mailing lists.

49



Thank you!

Visit https://gnu.org/software/guix for source code,
documentation, past talks, etc.

Questions?

50

https://gnu.org/software/guix


Legal

© 2016 David Thompson <davet@gnu.org>

This presentation is licensed under the Creative Common
Attribute Share-Alike 4.0 International license.

51


