
Practical, verifiable software
freedom with GuixSD

David Thompson

Sunday, March 25th, 2018



about me

GNU Guix contributor since 2013

GNU Guile user and contributor since 2012

Day job: DevOps (AWS, Ruby)

2



the four freedoms

0: The freedom to run the program as you wish, for any
purpose

3



the four freedoms

1: The freedom to study how the program works, and change
it so it does your computing as you wish

4



the four freedoms

2: The freedom to redistribute copies so you can help your
neighbor

5



the four freedoms

3: The freedom to distribute copies of your modified versions
to others

6



the four freedoms

a wonderful set of rights, but often difficult to exercise in
practice

7



common issues

figuring out how to view the exact source for a running
program is tricky

•

8



common issues

building from source is difficult or sometimes impossible

• non-standard build system

• build scripts make assumptions that aren’t true for your
system

9



common issues

sharing source or binaries has many pitfalls

• dependency hell

• incompatible libraries between systems

• high barrier to entry for common package managers

10



common issues

major system upgrades can lead to sadness

ever upgrade your system, reboot, and find yourself in a
completely broken state?

11



freedom: embedded

GuixSD removes many of the common barriers that prevent
users from exercising their four freedoms

12



what is guixsd?

GuixSD is a fully-free GNU/Linux distribution with an
advanced package manager and system upgrade mechanism

13



what is guix?

Guix is GuixSD’s package manager (like apt, yum, pacman,
etc.)

• unpriviliged package management
• per-user profiles
• atomic updates and rollbacks
• reproducible builds
• tools for many use-cases

14



unprivileged package management

users can build and install software without root privileges

tired: sudo apt install emacs

wired: guix package -i emacs

15



per-user profiles

each user may have one or more “profiles”, a union of many
packages, without clobbering another user’s environment

use cases:

• Alyssa and Ben use different versions of Emacs

• Alyssa hacks on 2 Ruby projects that require different
versions

16



transactional upgrades and rollbacks

experiment without fear!

guix package --upgrade emacs

oh no, the new version of Emacs is broken!

guix package --roll-back

17



transactional upgrades and rollbacks

system upgrades are transactional, too!

sudo guix system reconfigure my-machine.scm

oh no, the latest GuixSD updates broke my system!

no worries, just reboot and select the previous, working version
from the bootloader menu

18



inspecting source code

quickly grab the source code for a package:

tar xf $(guix build --source gimp)

19



visualizing dependencies

guix graph haunt | dot -Tpng > graph.png

20



sharing packages

guix build -L ~/daves-packages foo

<minimal package example>

21



sharing development environments

(use-modules (guix profiles)
(gnu packages base)
(gnu packages guile))

(packages->manifest
(list gnu-make

guile-2.2
guile-syntax-highlight
haunt))

use it:

guix environment --manifest=guix.scm

22



experimenting in isolated environments

how about a container?

guix environment –-container --ad-hoc ruby -- irb

23



sharing system configurations

(operating-system
(host-name "izanagi")
(timezone "America/New_York")
(locale "en_US.UTF-8")
(bootloader (grub-configuration (target "/dev/sda")))
(file-systems (cons (file-system

(device "root")
(title ’label)
(mount-point "/")
(type "ext4"))

%base-file-systems))
(users (list (user-account

(name "dave")
(comment "David Thompson")
(group "users")
(supplementary-groups ’("wheel" "netdev" "audio" "video"

"cdrom" "kvm" "input" "dialout")
(home-directory "/home/dave"))))

(packages (cons* arc-theme arc-icon-theme
htop less man-db ncurses nss-certs openssh unzip rsync
gnome-shell-extensions gnome-tweak-tool
%base-packages))

(services (cons* (gnome-desktop-service)
%desktop-services))

(name-service-switch %mdns-host-lookup-nss))

24



sharing binaries

start a server to share your builds:

guix publish

have a friend download them:

guix build \
--substitute-urls=http://guix.example.com:8080 \
hello

25



reproducible builds

reproducible builds produce bit-identical binaries when
performed multiple times under the same conditions.

requires fixing issues in upstream build systems that are
nondeterministic.

26



reproducible builds

this is a cross-distro effort, but Guix facilitates reproducibility
more than others

see Chris Lamb’s talk “You think you’re not a target? A tale of
three developers. . . ” from yesterday for more perspective

27



reproducible builds

is this build reproducible on my machine?

guix build --rounds=3 hello

28



challenge authority

is this build reproducible on many machines?

is this build compromised?

guix challenge

29



customize packages

show me how Ruby is built:

export EDITOR=emacs
guix edit ruby

30



customize packages

let’s make some changes!

git clone https://git.savannah.gnu.org/git/guix.git
cd guix
guix environment guix
./configure
make
guix build ruby

31



interoperate with other systems

need a Docker image?

guix pack --format=docker guile emacs geiser

(see Solving the deployment crisis with GNU Guix from LibrePlanet 2016 for reasons why Docker may

not be so great)

32



interoperate with other systems

or maybe you want something like snap or flatpak?

make a tarball bundle that anyone can extract on their
GNU/Linux system:

guix pack guile emacs geiser

33



interoperate with other systems

or maybe you want assistance translating foreign packages into
Guix packages:

guix import pypi flask

34



literally: embedded

GuixSD now runs on the Beaglebone Black single-board
computer!

(operating-system
(bootloader (bootloader-configuration

(bootloader u-boot-beaglebone-black-bootloader)
(target "/dev/mmcblk1")))

(initrd-modules (cons "omap_hsmmc" %base-initrd-modules))
(services (cons* (dhcp-client-service)

(agetty-service
(agetty-configuration
(extra-options ’("-L"))
(baud-rate "115200")
(term "vt100")
(tty "ttyO0")))

%base-services))
...)

35



extending guix

GuixSD is essentially a big Scheme library

with a little Scheme know-how its easy to write new tools that
use the exact same APIs that the core Guix tools use

36



the freedom to contribute

GNU Guix is a welcoming community:

• we have a code of conduct and enforce it

• we have started seeking new contributors via Outreachy

• we participate in Google Summer of Code every year

• oh, and no copyright assignment (in case you were
wondering)

join us!

37



thanks!

docs, past talks, source code, mailing list/IRC info, etc.:

https://gnu.org/s/guix

38



credits

© 2018 David Thompson

Licensed under Creative Commons Attribution Share-Alike 4.0

39


