
Practical, verifiable software
freedom with GuixSD

David Thompson

Sunday, March 25th, 2018



about me

GNU Guix contributor since 2013

GNU Guile user and contributor since 2012

Day job: DevOps (AWS, Ruby)
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the four freedoms

0: The freedom to run the program as you wish, for any
purpose
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the four freedoms

1: The freedom to study how the program works, and change
it so it does your computing as you wish
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the four freedoms

2: The freedom to redistribute copies so you can help your
neighbor
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the four freedoms

3: The freedom to distribute copies of your modified versions
to others
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the four freedoms

a wonderful set of rights, but often difficult to exercise in
practice
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common issues

figuring out how to view the exact source for a running
program is tricky

•
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common issues

building from source is difficult or sometimes impossible

• non-standard build system

• build scripts make assumptions that aren’t true for your
system
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common issues

sharing source or binaries has many pitfalls

• dependency hell

• incompatible libraries between systems

• high barrier to entry for common package managers
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common issues

major system upgrades can lead to sadness

ever upgrade your system, reboot, and find yourself in a
completely broken state?
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freedom: embedded

GuixSD removes many of the common barriers that prevent
users from exercising their four freedoms
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what is guixsd?

GuixSD is a fully-free GNU/Linux distribution with an
advanced package manager and system upgrade mechanism
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what is guix?

Guix is GuixSD’s package manager (like apt, yum, pacman,
etc.)

• unpriviliged package management
• per-user profiles
• atomic updates and rollbacks
• reproducible builds
• tools for many use-cases
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unprivileged package management

users can build and install software without root privileges

tired: sudo apt install emacs

wired: guix package -i emacs
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per-user profiles

each user may have one or more “profiles”, a union of many
packages, without clobbering another user’s environment

use cases:

• Alyssa and Ben use different versions of Emacs

• Alyssa hacks on 2 Ruby projects that require different
versions
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transactional upgrades and rollbacks

experiment without fear!

guix package --upgrade emacs

oh no, the new version of Emacs is broken!

guix package --roll-back
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transactional upgrades and rollbacks

system upgrades are transactional, too!

sudo guix system reconfigure my-machine.scm

oh no, the latest GuixSD updates broke my system!

no worries, just reboot and select the previous, working version
from the bootloader menu
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inspecting source code

quickly grab the source code for a package:

tar xf $(guix build --source gimp)
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visualizing dependencies

guix graph haunt | dot -Tpng > graph.png
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sharing packages

guix build -L ~/daves-packages foo

<minimal package example>
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sharing development environments

(use-modules (guix profiles)
(gnu packages base)
(gnu packages guile))

(packages->manifest
(list gnu-make

guile-2.2
guile-syntax-highlight
haunt))

use it:

guix environment --manifest=guix.scm
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experimenting in isolated environments

how about a container?

guix environment –-container --ad-hoc ruby -- irb
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sharing system configurations

(operating-system
(host-name "izanagi")
(timezone "America/New_York")
(locale "en_US.UTF-8")
(bootloader (grub-configuration (target "/dev/sda")))
(file-systems (cons (file-system

(device "root")
(title ’label)
(mount-point "/")
(type "ext4"))

%base-file-systems))
(users (list (user-account

(name "dave")
(comment "David Thompson")
(group "users")
(supplementary-groups ’("wheel" "netdev" "audio" "video"

"cdrom" "kvm" "input" "dialout")
(home-directory "/home/dave"))))

(packages (cons* arc-theme arc-icon-theme
htop less man-db ncurses nss-certs openssh unzip rsync
gnome-shell-extensions gnome-tweak-tool
%base-packages))

(services (cons* (gnome-desktop-service)
%desktop-services))

(name-service-switch %mdns-host-lookup-nss))
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sharing binaries

start a server to share your builds:

guix publish

have a friend download them:

guix build \
--substitute-urls=http://guix.example.com:8080 \
hello
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reproducible builds

reproducible builds produce bit-identical binaries when
performed multiple times under the same conditions.

requires fixing issues in upstream build systems that are
nondeterministic.
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reproducible builds

this is a cross-distro effort, but Guix facilitates reproducibility
more than others

see Chris Lamb’s talk “You think you’re not a target? A tale of
three developers. . . ” from yesterday for more perspective
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reproducible builds

is this build reproducible on my machine?

guix build --rounds=3 hello
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challenge authority

is this build reproducible on many machines?

is this build compromised?

guix challenge
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customize packages

show me how Ruby is built:

export EDITOR=emacs
guix edit ruby
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customize packages

let’s make some changes!

git clone https://git.savannah.gnu.org/git/guix.git
cd guix
guix environment guix
./configure
make
guix build ruby
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interoperate with other systems

need a Docker image?

guix pack --format=docker guile emacs geiser

(see Solving the deployment crisis with GNU Guix from LibrePlanet 2016 for reasons why Docker may

not be so great)
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interoperate with other systems

or maybe you want something like snap or flatpak?

make a tarball bundle that anyone can extract on their
GNU/Linux system:

guix pack guile emacs geiser
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interoperate with other systems

or maybe you want assistance translating foreign packages into
Guix packages:

guix import pypi flask
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literally: embedded

GuixSD now runs on the Beaglebone Black single-board
computer!

(operating-system
(bootloader (bootloader-configuration

(bootloader u-boot-beaglebone-black-bootloader)
(target "/dev/mmcblk1")))

(initrd-modules (cons "omap_hsmmc" %base-initrd-modules))
(services (cons* (dhcp-client-service)

(agetty-service
(agetty-configuration
(extra-options ’("-L"))
(baud-rate "115200")
(term "vt100")
(tty "ttyO0")))

%base-services))
...)
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extending guix

GuixSD is essentially a big Scheme library

with a little Scheme know-how its easy to write new tools that
use the exact same APIs that the core Guix tools use
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the freedom to contribute

GNU Guix is a welcoming community:

• we have a code of conduct and enforce it

• we have started seeking new contributors via Outreachy

• we participate in Google Summer of Code every year

• oh, and no copyright assignment (in case you were
wondering)

join us!
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thanks!

docs, past talks, source code, mailing list/IRC info, etc.:

https://gnu.org/s/guix
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