
Practical, verifiable software
freedom with GuixSD

David Thompson

Sunday, March 25th, 2018

about me

GNU Guix contributor since 2013

GNU Guile user and contributor since 2012

Day job: DevOps (AWS, Ruby)

Mastodon: https://toot.cat/@dthompson

2

https://toot.cat/@dthompson

the four freedoms

0: The freedom to run the program as you wish, for any
purpose

3

the four freedoms

1: The freedom to study how the program works, and change
it so it does your computing as you wish

4

the four freedoms

2: The freedom to redistribute copies so you can help your
neighbor

5

the four freedoms

3: The freedom to distribute copies of your modified versions
to others

6

the four freedoms

a wonderful set of rights, but often difficult to exercise in
practice

7

common issues

figuring out how to view the exact source for a running
program can be tricky

• source packages are good but are a bit arcane

8

common issues

building from source is difficult or sometimes impossible

• dependency hell

• non-standard build system

• build scripts make assumptions that aren’t true for your
system

• need multiple package managers

9

common issues

sharing binaries can be tricky, too

• high barrier to entry for common package formats

• binary bundles are convenient, but problematic

10

common issues

major system upgrades can lead to sadness

ever upgrade your system, reboot, and find yourself in a
completely broken state?

11

freedom: embedded

GuixSD removes many of the common barriers that prevent
users from exercising their four freedoms

12

what is guixsd?

GuixSD is a fully-free GNU/Linux distribution with an
advanced package manager and system upgrade mechanism

13

what is guix?

Guix is GuixSD’s package manager (like apt, yum, pacman,
etc.)

• unpriviliged package management
• per-user profiles
• atomic updates and rollbacks
• reproducible builds
• source-based with transparent binary downloads

14

unprivileged package management

users can build and install software without root privileges

15

per-user profiles

each user may have one or more “profiles”, a union of many
packages, without clobbering another user’s environment

use cases:

• Alyssa and Ben use different versions of Emacs

• Alyssa hacks on 2 Ruby projects that require different
versions

16

transactional upgrades and rollbacks

experiment without fear!

guix package --upgrade emacs

oh no, the new version of Emacs is broken!

guix package --roll-back

17

transactional upgrades and rollbacks

system upgrades are transactional, too!

sudo guix system reconfigure my-machine.scm

oh no, the latest GuixSD updates broke my system!

no worries, just reboot and select the previous, working version
from the bootloader menu

18

a note about binaries

there is no central point of trust for receiving pre-built binaries
(we call them substitutes)

Guix is a source-based package manager, but will transparently
download pre-built binaries from a trusted third party, if
available.

19

inspecting source code

quickly grab the source code for a package:

tar xf $(guix build --source gimp)

20

visualizing dependencies

guix graph haunt | dot -Tpng > graph.png

21

sharing packages

guix build -L ~/my-packages foo

<minimal package example>

22

development environments

guix environment is like Python’s virtualenv, Ruby’s rvm,
Node’s nvm, etc. but for everything

quick example: play with a Ruby REPL without installing Ruby

guix environment --ad-hoc ruby -- irb

23

sharing development environments

(use-modules (guix profiles)
(gnu packages base)
(gnu packages guile))

(packages->manifest
(list gnu-make

guile-2.2
guile-syntax-highlight
haunt))

use it:

guix environment --manifest=guix.scm

24

containerized environments

experiment in an environment that is isolated from the rest of
the system

example: a relatively constrained web browser

guix environment --ad-hoc icecat \
--container \
--network \
--share=$HOME/.mozilla \
--share=$HOME/Downloads \
--expose=/tmp/.X11-unix

$ DISPLAY=:0.0 icecat

25

containerized environments (advanced)

Create a Guix container that shares the host’s network devices,
GnuPG config, SSH config, and MySQL socket directory. The container
includes all of the software that is needed to build the gem set
with Bundler.
guix environment --container --network \

--share=$HOME/.gnupg --share=$HOME/.ssh --share=/run/mysqld --share=$HOME/Code \
--ad-hoc ruby@2.2 mariadb imagemagick libxml2 libxslt gcc-toolchain@4.9 \
gcc@4.9:lib make git coreutils openssh libffi pkg-config which sed gawk \
openssl grep findutils procps nss-certs sqlite inetutils rsync gnupg \
pinentry-tty

Tweak the environment such that Ruby gems end up in the right place
and their binaries can be found.
export GEM_HOME=$PWD/.gems
export PATH=$GEM_HOME/bin:$PATH
export LD_LIBRARY_PATH=$LIBRARY_PATH
export SSH_AUTH_SOCK=$HOME/.gnupg/S.gpg-agent.ssh
gpg-agent --daemon --enable-ssh-support --default-cache-ttl=10800 \

--pinentry-program=$(which pinentry-tty)
Create gem directory.
mkdir -p .gems
Create /usr/bin/env so Ruby scripts work.
mkdir -p /usr/bin && ln -s $(which env) /usr/bin/env
Bundle!
gem install bundler
bundle config build.nokogiri --use-system-libraries --with-xml2-include=$C_INCLUDE_PATH/libxml2
bundle
Start the server!
rails server

26

sharing system configurations

(operating-system
(host-name "izanagi")
(timezone "America/New_York")
(locale "en_US.UTF-8")
(bootloader (grub-configuration (target "/dev/sda")))
(file-systems (cons (file-system

(device "root")
(title ’label)
(mount-point "/")
(type "ext4"))

%base-file-systems))
(users (list (user-account

(name "dave")
(comment "David Thompson")
(group "users")
(supplementary-groups ’("wheel" "netdev" "audio" "video"

"cdrom" "kvm" "input" "dialout")
(home-directory "/home/dave"))))

(packages (cons* arc-theme arc-icon-theme
htop less man-db ncurses nss-certs openssh unzip rsync
gnome-shell-extensions gnome-tweak-tool
%base-packages))

(services (cons* (gnome-desktop-service)
%desktop-services))

(name-service-switch %mdns-host-lookup-nss))

27

sharing binaries

start a server to share your builds:

guix publish

have a friend download them:

guix build \
--substitute-urls=http://guix.example.com:8080 \
hello

host your own Guix LAN party!

(okay that sounds kinda boring)

28

reproducible builds

reproducible builds produce bit-identical binaries when
performed multiple times under the same conditions.

requires fixing issues in upstream build systems that are
nondeterministic.

29

reproducible builds

this is a cross-distro effort, but Guix was built to facilitate
reproducibility from the beginning

see Chris Lamb’s talk “You think you’re not a target? A tale of
three developers. . . ” from yesterday for a deeper dive

https://reproducible-builds.org

30

reproducible builds

is this build reproducible on my machine?

guix build --rounds=3 hello

31

challenge authority

is this build reproducible on many machines?

is this build compromised?

guix challenge emacs \
--substitute-urls=\
"https://mirror.hydra.gnu.org \
https://bobs-questionable-binaries.biz"

32

reasons for mismatched binaries

innocent build nondeterminism:

• timestamps

• hardware differences

• build directories

• bad parallelism

or maybe. . .

• malicious tampering

33

customize packages

show me how Ruby is built:

export EDITOR=emacs
guix edit ruby

34

customize packages

build Ruby using different source code:

guix build ruby --with-source=ruby-2.5.0.tar.gz

35

customize packages

let’s make some changes to the source code itself!

git clone https://git.savannah.gnu.org/git/guix.git
cd guix
guix environment guix
./configure
make
./pre-inst-env guix edit ruby
guix build ruby

36

interoperate with other systems

need a Docker image?

guix pack --format=docker guile emacs geiser

(see Solving the deployment crisis with GNU Guix from LibrePlanet 2016 for reasons why Docker may

not be so great)

37

interoperate with other systems

or maybe you want something similar to snap or flatpak?

make a tarball bundle that anyone can extract on their
GNU/Linux system:

guix pack guile emacs geiser

38

import foreign packages

or maybe you want assistance translating foreign packages into
Guix packages:

guix import pypi flask
guix import gem pry
guix import elpa magit

and many more (CRAN, CPAN, Crate, etc.)

39

literally: embedded

fun fact: GuixSD now runs on the Beaglebone Black
single-board computer!

(operating-system
(bootloader (bootloader-configuration

(bootloader u-boot-beaglebone-black-bootloader)
(target "/dev/mmcblk1")))

(initrd-modules (cons "omap_hsmmc" %base-initrd-modules))
(services (cons* (dhcp-client-service)

(agetty-service
(agetty-configuration
(extra-options ’("-L"))
(baud-rate "115200")
(term "vt100")
(tty "ttyO0")))

%base-services))
...)

hopefully more ARM systems coming soon! 40

extending guix

GuixSD is essentially a big Scheme library

with a little Scheme know-how its easy to write new packages,
services, and tools that use the exact same APIs that the core
Guix tools use

41

extending guix (silly example)

> (use-modules (guix packages) (gnu packages emacs))
> (for-each (lambda (name)

(display (string-append "hey, " name "! You’re an Emacs dependency!\n")))
(sort (map car (package-inputs emacs)) string<))

hey, acl! You’re an Emacs dependency!
hey, alsa-lib! You’re an Emacs dependency!
hey, dbus! You’re an Emacs dependency!
hey, giflib! You’re an Emacs dependency!
hey, gnutls! You’re an Emacs dependency!
hey, gtk+! You’re an Emacs dependency!
hey, imagemagick! You’re an Emacs dependency!
hey, libice! You’re an Emacs dependency!
hey, libjpeg! You’re an Emacs dependency!
hey, libotf! You’re an Emacs dependency!
hey, libpng! You’re an Emacs dependency!
hey, librsvg! You’re an Emacs dependency!
hey, libsm! You’re an Emacs dependency!
hey, libtiff! You’re an Emacs dependency!
hey, libx11! You’re an Emacs dependency!
hey, libxft! You’re an Emacs dependency!
hey, libxml2! You’re an Emacs dependency!
hey, libxpm! You’re an Emacs dependency!
hey, m17n-lib! You’re an Emacs dependency!
hey, ncurses! You’re an Emacs dependency!
hey, zlib! You’re an Emacs dependency!

42

the stack

Core components written in Scheme:

• initial RAM disk

• init system (GNU Shepherd)

• package manager

43

the freedom to contribute

The GNU Guix project has a welcoming community:

• we have a code of conduct

• we have started seeking new contributors via Outreachy

• we participate in Google Summer of Code every year

• oh, and no copyright assignment (in case you were
wondering)

we need your help to bring GuixSD to a wider audience!

join us!

44

thanks!

docs, past talks, source code, mailing list/IRC info, etc.:

https://gnu.org/s/guix

45

credits

© 2018 David Thompson

Licensed under Creative Commons Attribution Share-Alike 4.0

(sans the memes which I use under fair-use)

46

