From d283f7e661e14d6ae1881fe803e5b4f1ed0689ff Mon Sep 17 00:00:00 2001 From: David Thompson Date: Mon, 24 Jun 2024 13:49:08 -0400 Subject: Add 2024 Guix social talk. --- .../reveal.js/examples/math.html | 206 +++++++++++++++++++++ 1 file changed, 206 insertions(+) create mode 100644 2024-06-18-guix-social/reveal.js/examples/math.html (limited to '2024-06-18-guix-social/reveal.js/examples/math.html') diff --git a/2024-06-18-guix-social/reveal.js/examples/math.html b/2024-06-18-guix-social/reveal.js/examples/math.html new file mode 100644 index 0000000..bd2e75a --- /dev/null +++ b/2024-06-18-guix-social/reveal.js/examples/math.html @@ -0,0 +1,206 @@ + + + + + + + reveal.js - Math Plugin + + + + + + + + + +
+ +
+ +
+

reveal.js Math Plugin

+

Render math with KaTeX, MathJax 2 or MathJax 3

+
+ +
+

The Lorenz Equations

+ + \[\begin{aligned} + \dot{x} & = \sigma(y-x) \\ + \dot{y} & = \rho x - y - xz \\ + \dot{z} & = -\beta z + xy + \end{aligned} \] +
+ +
+

The Cauchy-Schwarz Inequality

+ + +
+ +
+

A Cross Product Formula

+ + \[\mathbf{V}_1 \times \mathbf{V}_2 = \begin{vmatrix} + \mathbf{i} & \mathbf{j} & \mathbf{k} \\ + \frac{\partial X}{\partial u} & \frac{\partial Y}{\partial u} & 0 \\ + \frac{\partial X}{\partial v} & \frac{\partial Y}{\partial v} & 0 + \end{vmatrix} \] +
+ +
+

The probability of getting \(k\) heads when flipping \(n\) coins is

+ + \[P(E) = {n \choose k} p^k (1-p)^{ n-k} \] +
+ +
+

An Identity of Ramanujan

+ + \[ \frac{1}{\Bigl(\sqrt{\phi \sqrt{5}}-\phi\Bigr) e^{\frac25 \pi}} = + 1+\frac{e^{-2\pi}} {1+\frac{e^{-4\pi}} {1+\frac{e^{-6\pi}} + {1+\frac{e^{-8\pi}} {1+\ldots} } } } \] +
+ +
+

A Rogers-Ramanujan Identity

+ + \[ 1 + \frac{q^2}{(1-q)}+\frac{q^6}{(1-q)(1-q^2)}+\cdots = + \prod_{j=0}^{\infty}\frac{1}{(1-q^{5j+2})(1-q^{5j+3})}\] +
+ +
+

Maxwell’s Equations

+ + \[ \begin{aligned} + \nabla \times \vec{\mathbf{B}} -\, \frac1c\, \frac{\partial\vec{\mathbf{E}}}{\partial t} & = \frac{4\pi}{c}\vec{\mathbf{j}} \\ \nabla \cdot \vec{\mathbf{E}} & = 4 \pi \rho \\ + \nabla \times \vec{\mathbf{E}}\, +\, \frac1c\, \frac{\partial\vec{\mathbf{B}}}{\partial t} & = \vec{\mathbf{0}} \\ + \nabla \cdot \vec{\mathbf{B}} & = 0 \end{aligned} + \] +
+ +
+

TeX Macros

+ + Here is a common vector space: + \[L^2(\R) = \set{u : \R \to \R}{\int_\R |u|^2 < +\infty}\] + used in functional analysis. +
+ +
+
+

The Lorenz Equations

+ +
+ \[\begin{aligned} + \dot{x} & = \sigma(y-x) \\ + \dot{y} & = \rho x - y - xz \\ + \dot{z} & = -\beta z + xy + \end{aligned} \] +
+
+ +
+

The Cauchy-Schwarz Inequality

+ +
+ \[ \left( \sum_{k=1}^n a_k b_k \right)^2 \leq \left( \sum_{k=1}^n a_k^2 \right) \left( \sum_{k=1}^n b_k^2 \right) \] +
+
+ +
+

A Cross Product Formula

+ +
+ \[\mathbf{V}_1 \times \mathbf{V}_2 = \begin{vmatrix} + \mathbf{i} & \mathbf{j} & \mathbf{k} \\ + \frac{\partial X}{\partial u} & \frac{\partial Y}{\partial u} & 0 \\ + \frac{\partial X}{\partial v} & \frac{\partial Y}{\partial v} & 0 + \end{vmatrix} \] +
+
+ +
+

The probability of getting \(k\) heads when flipping \(n\) coins is

+ +
+ \[P(E) = {n \choose k} p^k (1-p)^{ n-k} \] +
+
+ +
+

An Identity of Ramanujan

+ +
+ \[ \frac{1}{\Bigl(\sqrt{\phi \sqrt{5}}-\phi\Bigr) e^{\frac25 \pi}} = + 1+\frac{e^{-2\pi}} {1+\frac{e^{-4\pi}} {1+\frac{e^{-6\pi}} + {1+\frac{e^{-8\pi}} {1+\ldots} } } } \] +
+
+ +
+

A Rogers-Ramanujan Identity

+ +
+ \[ 1 + \frac{q^2}{(1-q)}+\frac{q^6}{(1-q)(1-q^2)}+\cdots = + \prod_{j=0}^{\infty}\frac{1}{(1-q^{5j+2})(1-q^{5j+3})}\] +
+
+ +
+

Maxwell’s Equations

+ +
+ \[ \begin{aligned} + \nabla \times \vec{\mathbf{B}} -\, \frac1c\, \frac{\partial\vec{\mathbf{E}}}{\partial t} & = \frac{4\pi}{c}\vec{\mathbf{j}} \\ \nabla \cdot \vec{\mathbf{E}} & = 4 \pi \rho \\ + \nabla \times \vec{\mathbf{E}}\, +\, \frac1c\, \frac{\partial\vec{\mathbf{B}}}{\partial t} & = \vec{\mathbf{0}} \\ + \nabla \cdot \vec{\mathbf{B}} & = 0 \end{aligned} + \] +
+
+ +
+

TeX Macros

+ + Here is a common vector space: + \[L^2(\R) = \set{u : \R \to \R}{\int_\R |u|^2 < +\infty}\] + used in functional analysis. +
+
+ +
+ +
+ + + + + + + -- cgit v1.2.3